Что такое доли

Доли

В этой теме мы познакомимся с образованием долей, научимся их записывать, читать и сравнивать.

Доли появляются, если нам нужно разделить ЦЕЛОЕ на равные части, например, яблоко:

На доли можно разделить окружность:

или прямоугольник:

Доля – это каждая из равных частей целого.

Название доли зависит от того, на сколько частей разделили целое.

Половина

Половина — это самая известная доля.

Например, яблоко разделили на две части, получилась половина яблока.

Любую долю можно записать как деление двух чисел. Мы разделили целое на две доли, каждую из долей мы можем записать в виде дроби, в которой черта обозначает знак деления.

Прочитать такую долю можно как ОДНА ВТОРАЯ.

Треть

Если целое разделили на три части, то получили ТРЕТЬ, третью часть.

Прочитать такую долю можно как ОДНА ТРЕТЬЯ.

Четверть

Если целое разделили на четыре части, получили ЧЕТВЕРТЬ, четвёртую часть.

Прочитать такую долю можно как ОДНА ЧЕТВЁРТАЯ.

Запись и чтение долей

одна пятая

одна шестая

одна восьмая

Сравнение долей

Для примера сравним две доли: одну шестую и одну третью.

Какая доля больше? Рассмотри рисунок:

Красным закрашены названные доли. Посмотри, какая доля больше? Одна третья.

Значит, одна третья часть БОЛЬШЕ, чем одна шестая часть.

Сравним ещё две доли: одну восьмую и одну четвёртую.

Какая доля больше? Рассмотри рисунок:

Красным закрашены названные доли. Посмотри, какая доля больше? Одна четвёртая.

Значит, одна четвёртая часть БОЛЬШЕ, чем одна восьмая часть.

Вывод: Чем долей больше, тем одна её часть МЕНЬШЕ.

Поделись с друзьями в социальных сетях:

Правило встречается в следующих упражнениях:

3 класс

Страница 94, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 96, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 106, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 39. Вариант 2. № 5, Моро, Волкова, Проверочные работы

Страница 16, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 28, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 32, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 78, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 70, Моро, Волкова, Рабочая тетрадь, 2 часть

Страница 75, Моро, Волкова, Рабочая тетрадь, 2 часть

4 класс

Страница 63, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 24, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 42, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 65, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 70, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 11, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 22, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 36, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 34, Моро, Волкова, Рабочая тетрадь, 2 часть

Страница 37, Моро, Волкова, Рабочая тетрадь, 2 часть

Юридическая математика, доли, дроби, пропорции.

Давно хотел что-то написать по юридической математике. Заметил, что многие коллеги недооценивают математику, а зря. Полагаю без неё юристу просто никуда, и будь моя воля преподавал бы специальный курс юридической математики в ВУЗ-ах при обучении студентов юриспруденции.
Это, полагаю, первая статья на данную тему. По мере сил постараюсь познакомить с разными вариантами юридических расчётов в разных случаях, но сначала о дробях. Дроби – это наследство, а, как говорят «в наследственном праве, отражена вся юриспруденция подобно тому, как в капле воды отражено всё море».
Для чего юристу математика и для чего юристу знать операции с дробями?
Попробуйте решить для начала следующую задачку: Наследники А. Б. В. Г. и Д. получили в наследство каждый по завещанию: А. – 1/8 имущества наследодателя; Б. – 6/17; В. – 3/123, а наследнику Д. завещано всё остальное. Однако вмешалась гражданка И, имеющая право на обязательную долю в наследстве, при этом доля, которая ей причиталась бы по закону составляет 1/6, соответственно она получила 1/12 от этого наследства. Какие доли теперь достались каждому из наследников А. Б. В. Г. и Д. если уменьшить их на доли, отошедшие гражданке И? Для интереса сообщу, что доля последнего наследника Д. стала 7009/16728.
В русском языке есть выражение «попасть впросак», в немецком языке есть аналогичное выражение «попасть в дроби». В операциях с дробями можно запросто попасть в ситуацию очень сложную, ошибиться тут очень легко, а чего стоит ошибка юриста – мы знаем. И тут не спасёт ширмочка типа фраз «это нотариусам или гражданским правоведам нужно, а нам, уголовным правоведом это ни к чему».
Представьте, что в вышеприведённом примере одна из долей является предметом преступления и нужно, применительно к стоимости наследственного имущества определить крупный это ущерб или особокрупный? Да и стыдно как-то юристу, когда к нему обращается клиент демонстрировать полную неспособность посчитать дроби.
Дроби нужны везде и всегда, считаем ли мы проценты, рассчитываем ли вес товара, определяем ли налоги, делим ли имущество. Во многих и многих вопросах не обойтись без дробей.
Ниже приведены задачки, имеющие практическую направленность, которые как раз демонстрируют необходимость математических операций с дробями и их знания. Ответы на задачки вы найдёте по ссылкам, если ткнёте в них. Но не спешите смотреть ответы, попробуйте решить сами. Полагаю, прочтя статью, Вам будет несложно это сделать и одного раза хватит навсегда.
Действия с дробями.
Сложение и вычитание дробей. Проще всего осуществлять сложение и вычитание дробей, если они имеют одинаковый знаменатель. В этом случае числители складываются или вычитаются и дают результат с тем же низменным знаменателем.

Попробуем представить это визуально. У нас есть пирог, разрезанный на 7 частей. Маше положили на тарелку 3 части, Пете положили две части, и Вите положили тоже две части. Витя свою часть съел, а Маша и Петя оставили свои части. Сколько частей осталось?
Из этого простого примера видно, почему знаменатель остаётся неизменным.
Аналогично и с вычитанием, при одинаковом знаменателе это сделать несложно.

В общем виде:

А если знаменатели разные? Тогда, необходимо привести дроби к одинаковому знаменателю. Проще всего это сделать, умножая последовательно дроби друг на друга, начиная с дробей, в которых меньше цифровых знаков и переходя к всё большим.

Здесь дробь 2/5 пришлось преобразовать в дробь 4/10. Ничего страшного в этом нет, поскольку, если мы представим пирог, разрезанный на пять частей, возьмём из этого пирога 2 части, то заметим, что если разрезать этот же пирог на 10 частей, и взять 4 части, то по размеру 4/10 будут равны тем же 2/5. То есть, мы имеем дело с одной и той же дробью.
Бывают дроби очень большие по количеству знаков и потому, приводя их к общему знаменателю желательно найти множитель поменьше.
В нижеприведённом примере кажется, что из большей дроби вычитается меньшая, на самом деле наоборот, потому и результат выходит в виде отрицательного числа (то есть возникла недостача кусочков пирога.)

Немного усложним примеры.

Снова путём умножения числителя и знаменателя приведём дроби к одинаковым. Только, обратите внимание, из-за того, что дроби неудобные, пришлось левую дробь и числитель и знаменатель умножать на знаменатель правой, а правую дробь – на знаменатель левой.

При операциях с несколькими дробями нужно найти знаменатель, общий для всех дробей, и привести каждую дробь к этому самому знаменателю.
Если перемножить 2, 4, 8, и 16 мы получим знаменатель 1024. Можно оперировать и с ним, но можно просто обнаружить, что число 16 делится и на 2, и на 4, и на 8. А раз так, что путём умножения легко из чисел 2, 4, 8 получить число 16. Если мы при этом знаменатель 2 будем умножать на 8, то и числитель умножим на 8, чтобы общая пропорция внутри дроби сохранилась. Действительно, если мы возьмём из пирога, разрезанного на 16 частей только 8 частей, то обнаружим, что это ровно половина пирога, то есть 1/2 от него. Дробь 3/4 путём умножения на 4 приобретёт вид 12/16. Дробь 7/8 преобразуется в 14/16 через умножение на 2.
В итоге при решении этого примера должно получиться 29/16. Можно решить этот пример и со знаменателем 1024, но такое решение будет громоздким.
Умножать и делить дроби гораздо проще. Чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). Общая формула такова:
Например:
На всякий случай замечу, что здесь общий знаменатель искать не нужно. Как известно, умножить, значит повторить сложение умножаемого столько раз, сколько требует своим числом множитель. Так 2 умножить на три значит 2+2+2, то есть три раза. Так и с дробями, 2/3 умножить на 3/4 значит, что две части от пирога, разрезанного на три кусочка нужно повторить несколько раз. В результате этого повторения получаем 6/12. Этот результат подлежит сокращению путём деления и знаменателя и числителя на 6, получаем в итоге 1/2. Заметили? Вроде бы умножали 2/3, которые больше половины, а получили в итоге половину! А потому, что умножение на дробь означает деление. Ведь дробь сама по себе и есть «застывшее деление».
Попробуйте умножить 2 на 1/3, что получится? Получится 2/3. И действительно 2 можно представить как дробь 2/1, тогда будет 2/1 * 1/3. Умножаем числитель на числитель, а знаменатель на знаменатель и выходит 2/3.
На самом деле мы взяли два целых пирога и от каждого из них отрезали по 1/3, вот и вышло 2/3 в итоге.
Очевидно, что умножение на дробь означает на самом деле деление.
Но нам известно, что операция деления есть операция обратная умножению. Стало быть, с дробями, осуществляя деление, мы на самом деле получим умножение?
Посмотрим, так ли это, но сперва просто нужно запомнить правило деления дроби на дробь: Чтобы разделить дробь на дробь, нужно одновременно поменять знак деления на умножение и вторую дробь «перевернуть», поставить на место знаменателя числитель, а на место числителя знаменатель.
Например:
Почему же тут получается умножение?
Представление о делении дроби на дробь человеку сложно сформулировать, видимо по этой причине в Древнем Египте математики предпочитали иметь дело с дробями в виде 1/n. Для этого все иные дроби приводили к этому виду, так например, дробь 3/4 приводили к виду 1/2 + 1/4. С такими дробями проще осуществлять действия и их проще понимать.
Дело в том, что, как указывалось выше, деление это операция обратная умножению. Так операцию 2: 2 можно записать как 2/2, или 2 * 1/2.
Операция 12: 4 может быть записана как 12/4. Но можно представить это иначе, как
12……. 4
— : —-
1……… 1
А теперь внимательнее! «Переворачиваем» вторую дробь и…!!!
Мы приходим к виду 12/4
12……. 1
— * —- = 12/4
1……… 4
По этой причине при делении дроби на дробь, та дробь, которая является делителем «переворачивается».
Заметили эту особенность не сразу. Первоначально, когда считали с помощью счёт, стремились дробь привести к целому числу, потом в интересах сложения и вычитания стали приводить дроби к общему знаменателю. В итоге пришли к выводу, что операция уравнивания дробей является излишней.
Первоначально деление осуществляли по следующей процедуре:
a/b: c/d = ad/bd: cb/bd = ad/cb.
Для примера:
2/3: 4/5 = 2*5 / 3*5: 4*3 / 5*3 = 2*5 / 15: 4*3 / 15 – в итоге знаменатель «15» можно убрать и получаем – 2*5 / 4*3 = 10/12 = 5/6
Последнее выражение » 2*5 / 4*3 » по сути, равно «2/3 * 5/4», смотрите сами:
Заметили как вторая дробь, делитель, «перевернулась»?
Отсюда, ещё в древности, стало очевидно, что приведение к единому знаменателю ничего не давало, и можно сократить вычисления, просто перевернув вторую дробь.
Предположим у нас есть половинка круглого пирога, или 1/2 от него.
Предположим, что есть тарелка, по диметру как раз под этот круглый пирог.
Но на самом деле у нас эта тарелка была распилена на 4 части и мы имеем только 2 таких четвертинки, или 2/4.
Как разделить 1/2 пирога на 2/4 от тарелки?
А никак, половинка пирога просто не уместится на 1/4. Потому придётся взять и добавить вторую четвертинку, тогда будет половина тарелки, а на ней такая же по диаметру половина пирога. В итоге 1/2 пирога ровно уложится на 2/4 тарелки.
Но ведь это же получается в диаметре целый круг! Выходит если 1/2: 2/4 = 1
Проверим, обратив вторую дробь: 1/2 * 4/2 = 4/4 = 1
Всё верно, так и есть. Числа идеальны, и нас не интересует, является ли круг либо его доли пирогом или тарелкой, важно, что в результате деления дроби на дробь получился целый, в числительном идеале, круг, так сказать в собранном виде.
К слову сказать, в древности рассуждали подобным же образом, только делили доли от барыша между людьми, при этом не стеснялись людей представлять в виде, например «три четверти человека». Но эти рассуждения сложны, приводить их не буду. Кому интересно потренировать логику – порассуждайте сами.
Интересно посмотреть на операцию деления, когда мы оперируем с десятичными дробями. Так деление 4: 0,5 означает 4/1: 5/10.
Но вторую дробь нужно обратить и получим: 4/1 * 10/5 = 40/5 = 8
Поскольку мы знаем, что 0,5 это то же самое, что 1/2 ( сокращая 5/10, числитель и знаменатель делим на 5, и получаем 1/2 ), то можно поступить просто, как только увидим
4: 0,5 сразу же просто удваиваем четвёрку = 4 * 2 = 8
А если 4: 0,3 то как умножить? Да так и умножить, если при делении на 0,5 мы получили 40/5, то тут мы получим аналогично 40/3.
При этом в числе 40 умещается 13 чисел 3 и остаётся ещё 1/3. Потому неправильную дробь приводим к нормальному виду
…… …1
13 —
…… …3
40 = 30+10 = 30 + 9 + 1 = 10*3 + 3*3 + 1 = 13 «штук» троек и цифра «1» в остатке, которая станет числителем в неправильной дроби.
А если 4: 0,03? Раз это три сотых то получим 4 сотни в числителе и тройку в знаменателе, или неправильную дробь вида 400/3.
Приведём её к нормальному виду и получим:
…… …1
133 —
…… …3
Ну и так далее, аналогично.
Кстати, десятичные дроби с сотыми долями и проценты – суть одно и то же.
Посмотрите сами:
0,5 = 0,50 = 50%
0,25 = 25%
0,8 = 0,80 = 80%
1 = 1,00 = 100%
Тут просто при необходимости добавляется нолик и передвигается на два знака запятая.
Возьмём посложнее:
0,1567 = 15,67%
То есть, как и в вышеприведённых примерах просто двигаем запятую на два знака влево.
Потому найти процент от числа крайне просто, нужно просто умножение на дробь.
Как найти 50% от числа 4 ?
А просто, ведь 50% это 0,5 или 1/2
Тогда 4 * 1/2 = 4/2 = 2
А как найти 25% от 84 ?
А тоже просто: 84/4 = 41
Пропорции.
Ну очень люблю пропорции, ими можно считать что угодно, и изменение объёма в зависимости от изменения температуры, и высоту небоскрёба по длине его тени, и многое-многое другое.
Чтобы продемонстрировать всю мощь метода пропорций приведу известный исторический пример: Древнегреческий философ, ученый и видный политический деятель Фалес Милетский (625 – 547 гг. до н.э.) одним из первых (если не считать Китайских учёных, которые всё знали о дробях и пропорциях во II в до н.э.) пришёл к выводу о пропорциональности сторон подобных треугольников.
Он умел находить какую-либо неизвестную величину по трем известным на основе пропорции a/b = c/d. Так, измерив длину тени, отбрасываемой предметами, Фалес с помощью этой пропорции нашел высоту египетской пирамиды. Измерение расстояния до корабля, находящегося далеко в море, им производилось тоже на основе этой пропорции. Выбрав на берегу моря базис A и вымерив с крайних его точек углы до корабля, он затем вычерчивал подобный треугольник небольших размеров и измерял у него две стороны, скажем, C и D. После этого ничего не стоило найти неизвестное расстояние до корабля — сторону B.
Сейчас это называется методом триангуляции, и он используется всеми кадастровыми инженерами (землемерами), когда они бегают со своими теодолитами, а потом что-то там чертят на бумаге, именуемой абрисом, это как раз треугольники. Этими треугольниками соприкасающимися друг с другом и описывается земельный участок, с их помощью находят основные расстояния и вычисляют площади.
Правило пропорции применяется, если имеется равенство двух дробей:
А………… С
—- = —-
В………… D
По правилам равенства дроби при переносе знаменателя на другую сторону за знак равенства он переходит в числитель и при наличии там другого числителя умножается на него.
Убедиться в этом легко. Допустим, у нас есть равенство дробей:
3/4 = 21/28
Тогда:
3 = 4*21/28
(чтобы увидеть, что мы сделали можно представить так: 3/нет ничего = 4*21/28)
или
21 = 3*28/4
(чтобы увидеть, что мы сделали можно представить так: 21/нет ничего = 3*28/4)
Если же мы за знак равенства переносим числитель, то он переходит в знаменатель и умножается на значение, которое уже там имеется.
нет ничего/4 = 21/28*3
Однако такое выражение недопустимо, ведь у нас получатся в левой части «ничего из четырёх долей», то есть ноль.
Тогда перенесём «4» направо, за знак равенства, а цифры из правой части налево.
28*3/21 = 4
Вот теперь всё нормально. Тогда можно и с другой частью дроби поступить так же.
3/4*21 = нет ничего/28
28 = 4*21/3
Можно оба знаменателя перенести на другую сторону, в результате получим:
3 * 28 = 21 * 4
проверим:
3*28 = 84
21*4 = 84
84 = 84
Что же у нас получилось? А получилось, что равенство дробей
А………… С
—- = —-
В………… D
Можно записать в виде:
А * D = С * В
Или в виде:
………… С*В
А = —-
………… D
………. А*D
В = —-
………. С
………… А*D
С = —-
………… В
………… В*С
D = —-
………… А
Можно просто запомнить это правило: «умножение выполняется крест-накрест»: числитель первой дроби на знаменатель второй и наоборот. То есть, если имеем
— при «А» соответствующее «С», то и
— при «В» будет соответствующее «D»
Можно представить визуально:
А – С
. \ /
. / \
В – D
Правило «крест на крест» будет показывать, что чтобы найти неизвестное А нужно «крест на крест» взять С умножить его на В и разделить на D
……… С*В
А = —-
………. D
Или, скажем, нам неизвестно D. Тогда опять «крест на крест» — берём В, умножаем его на С и делим на А.
……… В*С
D = —-
………. А
И тому подобное…
Почему так получается?
Представим, что один пирог мы разрезали на 4 равные части, а другой такой же пирог разрезали на 28 равных частей.
Теперь, если мы возьмём 1/4 от первого пирога и 7/28 от второго пирога, то мы получим равные по величине части.
Соответственно, если возьмем 2/4 от первого и 14/28 от второго – опять равенство.
Если возьмём 3/4 от первого и 21/28 от второго – вновь получим равные части.
Если же нам нужно определить какая часть второго пирога равна 3/4 от первого пирога, то как мы поступим? (Представьте себе это визуально и на всю жизнь поймёте правило пропорции.)
Верно. Мы мысленно 28 частей второго пирога делим на четыре части и обнаруживаем, что в каждой из четырёх частей у нас 7 кусочков. То есть 1/4 для пирога, разделённого на 28 частей, будет состоять из 7 кусочков, или 7/28-ых.
Дальше мы мысленно возьмём три раза по 7 кусочков, и у нас получится 21.
Что мы сделали?
Мы 28 разделили на 4 и умножили на 3.
28/4*3 = 21
На самом деле мы поступили по правилу пропорции, зная, что
— при «4-х» есть соответствующее «28», то и
— при «3-х» будет соответствующее «неизвестное число»
Потому мы «крест на крест»: 28*3/4 (и получили) = 21.
От перестановки местами цифр при умножении и делении результат не меняется:
28/4*3 = 28*3/4 = 3*28/4=3/4*28 – всё одинаково.
— 28 частей пирога представляем, как разделили на четыре и взяли 3 из них.
— от 28-ми частей пирога взяли 3 из 4-х.
— взяли 3 части пирога, когда его же разделили на 28 частей и их же поделили на 4 части.
— взяли 3 из 4-х частей пирога разделённого на 28 частей.
Всё одинаково.
Или при равенстве дробей 3/4 = 21/28 мы перенесли 28 за знак равенства и получили
28*3/4=21
Где нам пригодится правило пропорции?
А везде, где в вычислениях потребуется определить неизвестное, когда известно, что имеется равенство долей. Например, в процентных вычислениях. Ведь проценты – это та же дробь, которая в исходном состоянии имеет вид 100/100. Скажем 10% — это 10/100, а 50% — это 50/100. Когда мы говорим «50% от 1000 рублей» мы говорим о пропорции, указываем на то, что от 1000 рублей взято 50/100, или 1/2, или фактически 500 рублей.
Скажем. Нам известно, что есть 3000 рублей взятых взаймы. За пользование займом нужно платить 3% в месяц. Займом пользовались 4 месяца, то есть, должны заплатить 12% от суммы займа (4 мес. * 3% в месяц = 12 %).
Сколько это будет в деньгах?
3000 руб. соответствует 100%-там
Х руб. должно соответствовать 12%-там
«крест на крест» получаем:
3000 руб. * 12%
———————— = Х руб.
100%
Х = 3000 * 12 / 100 = 360 рублей.
Хотя, помня, что проценты и десятичные дроби – суть одно и то же, мы можем поступить проще: 3000 * 0,12 = 30 *12 = 360
А как быть в вычислениях налога на добавленную стоимость? Если, скажем, нам известно, что на цену товара, которая нам неизвестна, был начислен налог в 18% и в результате товар был продан за 5600 рублей (НДС входит в эту сумму)? Как тут найти сумму НДС?
Попробуйте вычислить сами, какова была цена товара (считайте, потом прочтёте дальше).
У Вас должно получиться: 4745,76 рублей. Получилась эта сумма?
Полагаю, не получилась.
Те, у кого получилось 4592 рубля – неправы.
Моя цифра верна. Посмотрите сами, если вычислить 18% от 4745,76 рублей, а потом сложить вычисленные проценты и первоначальную цену в 4745,76 рублей, то получим как раз 5600 рублей:
4745,76 руб. соответствует 100%-там
Х руб. должно соответствовать 18%-там НДС
Делаем «крест на крест»:
Х = 4745,76 * 18 / 100 = 854,24 руб. сумма НДС
4745,76 + 854,24 = 5600 руб. за которые и был продан товар.
Моя цифра верна, почему же Вы ошиблись?
Полагаю, Вы считали так:
5600 руб. соответствует 100%
Х руб. соответствует 18%
Х = 5600 * 18 / 100 = 1008 руб. НДС
5600 – 1008 = 4592 рубля
А это неверно! Поняли где ошибка? «На цену товара был начислен налог 18%» и… товар был продан с этим налогом, «НДС входит в эту сумму». А раз он входит, то сумму мы приняли за 100%, потом от неё начислили НДС в 18%, потом его прибавили и продали уже 118% !!!!
5600 руб. соответствуют 118%-там (а не 100%)
Х руб. соответствует 100% там
Х = 5600 * 100 / 118 = 4745,76 рублей
Получили искомый результат.
Попробуйте сами теперь «вытащить» НДС из суммы 5600 рублей.
5600 руб. соответствуют 118%-там
Х руб. соответствует 18% там
И? Что получилось?
В методической литературе часто предлагают вычленять НДС из суммы, в которую он включен путём умножения на 0,15. В принципе это близко к правде, ведь:
118% / 18% = 0,1525423728813… или округлённо 0,15. В данном случае мы вычислили коэффициент пропорциональности.
Так в нашем примере 3/4 = 21/28 = 0,75 единый коэффициент пропорциональности.
В принципе, если нам нужно узнать числитель при знаменателе 28 мы можем просто 28 умножить на этот коэффициент 0,75 и получим искомое число 21.
Но вот с вычислением НДС этот «фокус» не работает, поскольку тут вмешивается юриспруденция, и неточность вычислений порождает юридические риски.
Посмотрите сами, у нас при сумме продажи 5600 рублей НДС составляет 854,24 руб.
А если мы 5600 руб. умножим на коэффициент 0,15, у нас получится 840 рублей. То есть получается меньше, чем положено. Это произошло из-за округления коэффициента. Налоговая инспекция при проверке быстро найдёт недоначисленный НДС и оштрафует. Это в данном примере взята маленькая цифра, а в реальной работе предприятий будут миллионные суммы продаж, которые от такой маленькой неточности выльются в огромные налоговые штрафы.
Пользуясь же правилом пропорции, мы точно находим искомую сумму НДС. Пропорциями считать гораздо правильнее и точнее.
Вывод: Нужно быть внимательным, когда определяешь соответствующие друг другу части пропорции.
Особенно внимательным надо быть к сущности пропорции. Выше была рассмотрена прямая пропорция, а есть ещё и обратная.
Выше рассмотренные выражались так:
— Если при «А», которое больше есть соответствующее «С», которое больше,
— То и при «В», которое меньше будет соответствующее «D», которое меньше
Или просто «больше-больше», «меньше-меньше».
Вспомните, как считали НДС:
5600 руб. – 118%
Х руб. – 18%
В обратной пропорции всё наоборот. В ней «больше-меньше», «меньше-больше» или наоборот «меньше-больше», «больше-меньше».
Мне обратная пропорция впервые попалась, когда делал расчёты в связи с поставками зерна в вагонах хопперах по железной дороге (пришлось делать эти расчёты, так как получатель принял товара меньше, чем было отправлено).
Упрощённо те мои расчёты можно представить так:
Объём поставленного товара предполагалось перевезти партиями по 10 вагонов. Но обнаружили, что это 100 рейсов. Сколько вагонов нужно добавить в каждую партию, чтобы обойтись в 40 рейсов?
10 вагонов – 100 рейсов
Х вагонов – 40 рейсов
Х = 10*100/40 = 25 вагонов в каждой партии. То есть к 10-ти вагонам нужно добавить ещё 15 вагонов.
Заметили? Мы уже действуем не «крест на крест» а «параллельно». И почему?
А потому, что здесь, чем больше рейсов, тем меньше вагонов и наоборот: «больше-меньше», «меньше-больше». Всё просто.
10-100
25-40
А в прямой пропорции было бы
10-25
40-100
Сформулируем эту задачку иначе:
Грузоподъёмность одного вагона хоппера составляет 65 тонн. Всего нужно было перевезти 65000 тонн. Этот объём предполагалось перевезти партиями по 10 вагонов. Но обнаружили, что это 100 рейсов. Сколько вагонов нужно добавить в каждую партию, чтобы обойтись в 40 рейсов?
Тут уже, кажется, проще: 65000 тн общего веса поставок делим на 65 тн грузоподъёмности одного вагона и получаем, что это всё влезает в 1000 вагонов. Тогда для 40 рейсов нам потребуется 1000 / 40 = 25 вагонов.
Но насколько проще решается та же задачка через обратную пропорцию!
А теперь предлагаю потренировать интеллект на решении задачек.
Для начала возьмём задачки из арифметики Магницкого, так как они удивительно просто приучают к практическому мышлению при применении дробей.
Задача 1:
В жаркий день 6 косцов выпили бочонок кваса за 8 часов. Нужно узнать, сколько косцов за 3 часа выпьют такой же бочонок кваса.
Решение задачи 1
Задача 2:
Один человек выпьет кадь пития в 14 дней, а со женою выпьет ту же кадь в 10 дней, и ведательно есть, в колико дней жена его особо выпьет ту же кадь?
Решение задачи 2
Задача 3:
Вопросил некто некоего учителя, сколько имеешь учеников у себя, так как хочу отдать сына к тебе в училище. Учитель ответил: если ко мне придет учеников еще столько же, сколько имею, и пол столько и четвертая часть и твой сын, тогда будет у меня учеников 100.
Решение задачи 3
Задача 4:
В домовладении, состоящем из двух жилых домов, когда-то проживала семья, состоящая из двух родителей и трёх детей, одного сына и двух дочерей.
Первоначально домовладение состояло из одного дома площадью 62 кв.м.
В 1978-ом году супруги развелись, и право собственности на старый дом было разделено между ними, каждому из супругов стало принадлежать по 1/2 старого дома.
После этого отец, пользуясь посильной помощью детей, построил второй дом площадью 124 кв.м. Дом был построен к 1985 году и числился в собственности отца.
Затем отец подарил 1/4 этого нового дома младшей из дочерей, которая являлась инвалидом второй группы и находилась на иждивении обоих родителей, не смотря на состоявшееся расторжение брака родителей.
Сын после службы в армии уехал проживать в другой город.
Другая, старшая дочь, которая не была инвалидом, вышла за муж и её семья проживала в новом доме с отцом. У этой дочери родилось два ребёнка (внуки).
Отец скончался в 2007 году и после него заявление о вступлении в наследство никто не подавал.
Мать скончалась в 2009-ом году, и после её смерти осталась завещание, в котором она завещала всё своё имущества сыну.
Старшая дочь скончалась так же в 2009-ом году, спустя 4 месяца после смерти матери.
Приехавший из другого города сын подал заявление о вступлении в наследство, а затем обратился в суд, требуя признать за ним право собственности на 4/6 в старом доме и 1/4 в новом доме. Правомерны ли его требования и на какую максимальную долю он может претендовать? Как должны распределиться доли между наследниками.
На момент спора старый дом оценен в 585 000 рублей, а новый в 1 738 000 рублей.
Решение задачи 4
Задача 5:
В 2000 году умерла наследодательница, которой принадлежала 1/2 доли жилого дома. Другая 1/2 доля принадлежала сыну наследодательницы. Умершая имела сына и 4-х дочерей, одна из которых умерла в 1999-ом году, у умершей остались муж и двое детей. Ещё одна дочь является инвалидом, инвалидность получена в процессе работы на «вредном» производстве. Свои 1/2 доли наследодательница завещала своему сыну.
К нотариусу для вступления в наследство обратились сын наследодательницы и её дочь-инвалид.
Спустя 6 месяцев после открытия наследства нотариус выдал сыну свидетельство о праве на наследство на 13/15 долей, а 2/15 доли отошли сестре. Сын-наследник решил оспорить наследование своей сестры, так как у неё две квартиры, в доме она никогда не проживала и за матерью не ухаживала.
Каковы перспективы этого спора и что в результате должно получиться?
Решение задачи 5
Задача 6:
Налоговая инспекция в результате проверки налогоплательщика, находящегося на общей системе налогообложения, установила, что налогоплательщиком были закуплены листы г/к 08Х18Н10Т, размер одного листа 0,6х1000х2570 мм, общий вес 4,365 тн.
На закупку всей этой стали было уплачено поставщику за всю партию 401 567,72 рублей, в том числе НДС – 61 256,09 рублей.
При этом было установлено, что 156 листов указанной стали было продано, соответственно, налогоплательщик должен был уплатить НДС по ставке 18% от цены проданного.
Проданный по счетам-фактурам металл продавался по цене 1 770 рублей за лист металла, НДС в том числе (включен в указанную цену).
Налоговая инспекция при этом рассчитала, что НДС, подлежащей уплате в бюджет, составляет 45 120 рублей. Верно ли определена эта сумма?
Плотность стали в данном случае составляет 7295,7 кг/м3
Плотность рассчитывается путём деления массы на объём, что и видно из показателя «кг/м3».
Решение задачи 6

Урок математики в 3-м классе. Тема «Доли»

Тема: Доли» (3 класс)
Цели:

  • Дать общее представление о доле числа.
  • Познакомить с их записью и чтением.
  • Учить называть, записывать и сравнивать доли.
  • Развивать самостоятельность, логическое мышление.
  • Развивать навыки устных вычислений.

Задачи:

  • Выполнить практические задачи по инструкции учителя.
  • Выполнить наглядное сравнение долей.
  • Решить задачи с использованием нового материала.
  • Повторить умножение и деление.

ХОД УРОКА

I. Чистописание

12 21
– Дайте характеристику каждому числу.

II. Устный счёт

60 : 10 6 * 7
42 * 1 90 * 0
17 : 17 7 * 8
40 : 5 45 : 45

1 24 8 64 56 42 9 6 12 0
н

о

д

с

и

а

к м

ф

р

– Проверим: возьмите простой карандаш и под каждым ответом поставьте соответствующую букву.

6 42 1 8 42 0 56 1
м а н д а р и н

– Если ответы верны, то получится слово. (Мандарин)

– Вы скажете, причём тут мандарин, когда у нас математика?

– А он нам поможет назвать тему урока.

III. Сообщение темы урока

– Вот у меня мандарин. Я его очистила. Когда мы начинаем его есть, то мы его делим на что? (На дольки)
– Мандарин состоит из долек. Если мы посмотрим на чеснок, он тоже состоит из долей.
– Так тема урока – «Доли». (Запись в тетради)

IV. Объяснение нового материала

1. – У вас на партах лежит геометрическая фигура. Как она называется? (Круг)
– Сложите круг пополам.
– Разверните.
– Сколько равных частей получили? (2)
– Итак, мы разделили круг пополам, т.е. на две равные части.
– Как они называются? (Половинки)

2. Яблоко.

– Теперь я возьму яблоко, разрежу его пополам.
– Сколько равных частей я получила? (2 равные части)

– Можно сказать, что половина яблока – это одна вторая доля яблока.

– А записывают это так: .
– Сколько частей взяли? (1)
– На сколько частей разделили? (2)
– Мы получили .
– В математике число, которое записано над чертой, называют числитель, а число, которое записано под чертой – знаменатель.
– Итак, числитель – показывает, сколько равных частей взяли, а знаменатель – показывает, на сколько равных частей разделили целое.

(Запись в тетради:)

– Итак, мы яблоко разделили на две равные доли и получили долю яблока.
– Доля – это часть целого.

3. – Теперь возьмите круг, который вы согнули пополам. Сложите ещё пополам.
– Разверните. Сколько теперь равных частей получили? (4)

4. Яблоко

– Я возьму и каждую долю яблока разрежу пополам.
– Сколько равных частей получили? (4)

– А записывают это так: .
– В числителе записываем 1, а в знаменателе – 4.

5. – Посмотрите на и .
– Сравните: что больше: и ?

(Запись в тетради: > )

– Вывод: чем больше частей, тем доля меньше.

V. Самостоятельная работа

Карточки: изображено 6 кругов, каждый разделён на доли: на 3, 8, 2, 4, 6,12. Надо подписать: ,, , , , .

VI. Физминутка

VII. Закрепление. Работа по учебнику

1. Стр. 80 №1.

– Итак, пирог разделён на 6 равных частей. (Показ на доске)

– Взяли 1 такую часть

– Это доля пирога.
– И вам нужно узнать, какая доля получится, если разделить на 2 равные части каждую шестую долю пирога.
– Значит, что мы должны сделать с каждой шестой? (Разделить на 2 равные части)
– У вас у каждого «пирог», разделённый на 6 равных частей.
– Разделите каждую шестую долю пирога на две равные части.
– Проверяю. (У доски варианты деления)
– Сколько равных частей получили? (12)
– Значит, какая доля получится? ( )
– Сравните: какая доля больше: или ?
(Запись в тетради: > )

Вывод: чем больше частей, тем доля меньше.

2. Стр. 80 №2.

– У вас на картинке прямоугольники, которые разделены на доли.
– Какого цвета доля? (Розового)
– Какого цвета доля? (Синего)
– Какого цвета доля? (Зелёного)
– Какого цвета доля? (Жёлтого)

– Какая доля меньше или ?
(Запись в тетради: < )
– Чем больше частей, тем доля меньше.
– Какая доля больше: или ?

(Запись в тетради: > )

– Какая доля самая маленькая? ()
– Запишите в тетради доли прямоугольника, начиная с наименьшей, т. е. с самой маленькой.
– Проверим.

3. Стр. 80 № 3.

– Прочитаем задание.
– Какую фигуру надо начертить?
– Чему равна сторона квадрата?
– Начертите квадрат со стороной 3 см.
– Подпишите.
– Читаем дальше, что нужно сделать?
– Выполним 1 часть.
– Значит, на сколько равных частей надо разделить квадрат? (На 9)
– Как разделим? / на квадратные см/
– Что такое квадратный см?
– Разделите.
– Сколько частей получили? (9)
– Назовите 1 такую часть. ()
– Закрасьте .
– Закрасьте самостоятельно.
– Проверяем.

VII. Итог урока

– Какая тема урока была?
– Что такое доля?
– Мы учились делить на доли и записывать доли.
– Как называется число, которое пишем над чертой?
– Что показывает числитель?
– Как называется число, которое под чертой?
– Что показывает знаменатель?
– А ещё мы учились сравнивать доли. Какой вывод сделали?
– Урок закончен. Спасибо.

Значение слова &laquoдоля»

  • ДО́ЛЯ, -и, род. мн. -е́й, ж.

    1. Часть целого. Делить на равные доли. □ Марфа считала непростительным грехом отнестись с пренебрежением даже к булавке, попавшейся ей в сору, стеариновому огарку величиною в одну десятую долю вершка. Гл. Успенский, По черной лестнице. — Правое легкое состоит из трех долей… — зубрил Клочков. Чехов, Анюта. || То, что приходится на каждого участника при распределении, разделе чего-л. разделили на три равные части все деньги —. Я получил свою долю. Морозов, Повести моей жизни. При дележе астраханской добычи Тхамали взял только оружие, добытое в бою, и с пренебрежением отказался от своей доли в награбленном. Либединский, Горы и люди. || То, что вносится каждым участником в общее дело, предприятие и т. п., а также право на участие в них. — Я жалованье свое на государственное просвещение да на погорелых жителей Казани пожертвовал. — Вишь ты! Так это ты Казань-то обстроил? батюшка? — Ну да, и моя там есть доля, — отвечал Фома. Достоевский, Село Степанчиково.

    2. Участь, судьба. Счастливая доля. Женская доля. □ И долго, долго дедушка О горькой доле пахаря С тоскою говорил. Н. Некрасов, Кому на Руси жить хорошо. Люблю — такая, значит, судьба моя. Значит, доля моя такая. Чехов, Три сестры. || Прост. Счастье, удача. Эх-ма! не далось мне таланта и доли! Когда ж пропадешь ты, худое житье? И. Никитин, Порча.

    3. Русская мера веса, равная 44 мг, применявшаяся до введения метрической системы.

    Львиная доля см. львиный. Быть в доле; войти в долю; принять в долю — об участии в каком-л. деле, предприятии. На долю чью или кому ( выпасть, прийтись, достаться) — сложиться тем или иным образом для кого-л., оказаться неизбежным для кого-л.

Что такое доля в математике

Посмотрите. Всё ль в порядке:

Книжки, ручки и тетрадки.

Прозвенел сейчас звонок.

Начинается урок .

“ Считай несчастным тот день или тот час, в который ты не усвоил ничего нового, ничего не прибавил к своему образованию”.

Ян Амос Каменский

Я.А.КАМЕНСКИЙ 1592 – 1670

1) ОА – … 2) О – … 3) … 4) АВ – … 5) …

О

Ответ: сектор –

часть круга, ограниченная двумя радиусами.

Мама купила арбуз.

Разрезала его на 6 равных частей:

Что такое доля?

Доля – каждая из равных частей единицы. Так как арбуз разрезали на 6 равных частей, значит его разделили на 6 долей и каждый получил «одну шестую» долю арбуза, или, короче «одну шестую арбуза».

А

В

АВ

половина

четверть

треть

Как записывают доли?

Для записи любой доли используют горизонтальную чёрточку. Её называют дробной чертой

Пишут :

Обыкновенная дробь.

Записи вида называют

обыкновенными дробями …

Числитель дроби

Черта дроби (дробная черта)

Знаменатель дроби

Что показывают числитель и знаменатель дроби?

Знаменатель показывает, на сколько долей делят, а числитель – сколько таких долей взято.

Прочитайте дроби. Что показывает числитель и знаменатель каждой дроби?

Физкультминутка

  • Раз –согнуться, разогнуться,
  • Два – нагнуться, повернуться,
  • Три — в ладоши три хлопка,
  • Головою три кивка.
  • На четыре – руки шире,
  • Пять, шесть — тихо сесть,
  • Семь, восемь – лень отбросим.

Запишите в виде обыкновенной дроби.

  • Две седьмых
  • Четыре девятых
  • Одна сотая
  • Шесть восьмых
  • Три двадцать пятых
  • Половина

Подумай и ответь.

Какая часть фигуры закрашена?

2) Какое из чисел больше:

V. Домашнее задание: п. 23; № 925, 926, 932, повторение п. 10, 11. В математический словарь: сектор.

РЕФЛЕКСИЯ

НА УРОКЕ

  • Я узнал…
  • Я научился…
  • Мне понравилось…
  • Я затруднялся…
  • Моё настроение…