Содержание
- Нулевая гипотеза (статистика)
- Нулевая гипотеза — Null hypothesis
- Нулевая гипотеза
- 4.1 Понятие нулевой и альтернативной гипотезы
- 4.2 Общие принципы проверки статистических гипотез
- 4.3 Понятие гипотезы в педагогике
- Ошибки I и II рода при проверке гипотез, мощность
- Общий обзор
- Принятие неправильного решения
- Мощность и связанные факторы
- Проверка множественных гипотез
Нулевая гипотеза (статистика)
Смотреть что такое «Нулевая гипотеза (статистика)» в других словарях:
-
Нулевая гипотеза — Нулевая гипотеза гипотеза, которая проверяется на согласованность с имеющимися выборочными (эмпирическими) данными. Часто в качестве нулевой гипотезы выступают гипотезы об отсутствии взаимосвязи или корреляции между исследуемыми переменными … Википедия
-
Статистика в психологии (statistics in psychology) — Первое применение С. в психологии часто связывают с именем сэра Фрэнсиса Гальтона. В психологии под «статистикой» понимается применение количественных мер и методов для описания и анализа результатов психол. исслед. Психологии как науке С.… … Психологическая энциклопедия
-
Статистика малых выборок (small-sample statistics) — Принято считать, что начало С. м. в. или, как ее часто называют, статистике «малых п», было положено в первом десятилетии XX века публикацией работы У. Госсета, в к рой он поместил t распределение, постулированное получившим чуть позже мировую… … Психологическая энциклопедия
-
статистикакритерия — Статистика – функция, вычисляемая по наблюденной выборке. Соответственно, статистика критерия – это статистика, используемая в статистическом критерии. Если ее значение попадает в критическую область, нулевая гипотеза отвергается. Выбор… … Словарь социологической статистики
-
ГОСТ Р 50779.10-2000: Статистические методы. Вероятность и основы статистики. Термины и определения — Терминология ГОСТ Р 50779.10 2000: Статистические методы. Вероятность и основы статистики. Термины и определения оригинал документа: 2.3. (генеральная) совокупность Множество всех рассматриваемых единиц. Примечание Для случайной величины… … Словарь-справочник терминов нормативно-технической документации
-
Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора
-
Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… … Энциклопедия инвестора
-
t-критерий Стьюдента — t критерий Стьюдента общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t критерия связаны с проверкой равенства средних… … Википедия
-
Критерий Краскела — Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия
-
Критерий Краскела-Уоллиса — предназначен для проверки равенства средних нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому монотонному … Википедия
Нулевая гипотеза — Null hypothesis
Для публикации см Нулевая гипотеза: Журнал маловероятен науки .
В умозаключениях статистики , то нулевая гипотеза является общим утверждение или по умолчанию позиция , что не существует никакой связи между двумя измеренными явлениями, или никакой связи между группами. Тестирование (принятие, утверждение, отклоняя или опровергающий) нулевую гипотезу й , таким образом , сделать вывод , что существует или нет оснований полагать , что это связь между двумя явлениями (например , что потенциальное лечение имеет измеримый эффект) -это центральное задача в современной практике науки; поле статистики дает точные критерии для отклонения нулевой гипотезы.
Нулевая гипотеза, как правило, предполагается, чтобы быть правдой, пока доказательства не указаны иными.
В статистике, он часто обозначается H 0 ; и, независимо от того, является ли выражение произносится как «H-ничто», «H-нуль» или «H-ноль» (или, даже, некоторые, «Н-о»), индекс всегда пишется с цифры 0 , никогда прописная буква алфавита O .
Понятие нулевой гипотезы используется по- разному в двух подходах к статистическому умозаключений. В тестировании значения подхода Рональд Фишер , нулевая гипотеза отвергается , если наблюдаемые данные существенно вряд ли произошли , если нулевая гипотеза верна. В этом случае нулевая гипотеза отвергается и альтернативная гипотеза принимается на своем месте. Если данные согласуются с нулевой гипотезой, то нулевая гипотеза не отвергается. Ни в одном случае нулевая гипотеза или ее альтернативы доказано; нулевая гипотеза проверяется с данными и решение принимается на основании того, насколько вероятно или маловероятно , что данные. Это аналогично правовому принципу презумпции невиновности , в котором предполагается , подозреваемый или обвиняемый невиновен (нуль не отвергается) до тех пор , пока вина не доказана (нулевая отвергается) вне всяких разумных сомнений (в статистически значимой степени).
В проверке гипотез подхода Ежи Нейман и Эгон Пирсон , нулевая гипотеза контрастирует с альтернативной гипотезы и две гипотезы различаются на основе данных, с определенными частотами ошибок.
Статистические выводы можно сделать без нулевой гипотезы, указав статистическую модель , соответствующую каждый кандидат гипотезу и с помощью выбора модели техники , чтобы выбрать наиболее подходящую модель. (Наиболее распространенные способы выбора основаны либо информационный критерий Акаика или байесовского фактор .)
Нулевая гипотеза
Нулевая гипотеза — принимаемое по умолчанию предположение о том, что не существует связи между двумя наблюдаемыми событиями, феноменами. Так, нулевая гипотеза считается верной пока нельзя доказать обратное. Опровержение нулевой гипотезы, то есть приход к заключению о том, что связь между двумя событиями, феноменами существует, — главная задача современной науки. Статистика как наука даёт чёткие условия, при наступлении которых нулевая гипотеза может быть отвергнута.
Часто в качестве нулевой гипотезы выступают предположения об отсутствии взаимосвязи или корреляции между исследуемыми переменными, об отсутствии различий (однородности) в распределениях (параметрах распределений) в двух и/или более выборках. Для обозначения нулевой гипотезы часто используют символ H0.
При статистическом выводе исследователь пытается показать несостоятельность нулевой гипотезы, несогласованность её с имеющимися опытными данными, то есть отвергнуть гипотезу. При этом подразумевается, что должна быть принята другая, альтернативная (конкурирующая), исключающая нулевую гипотезу. Если же данные наоборот подтверждают нулевую гипотезу, то она не отвергается. Это похоже на принцип презумпции невиновности, когда подозреваемого считают невиновным (подразумевается нулевая гипотеза), пока не будет доказано обратное (нулевая гипотеза отвергнута) сверх необходимых сомнений (т.е. в статистически значимой степени).
Лекция 4. Проверка статистических гипотез
4.1 Понятие нулевой и альтернативной гипотезы..
4.2 Общие принципы проверки статистических гипотез.
4.3 Понятие гипотезы в педагогике.
4.1 Понятие нулевой и альтернативной гипотезы
Поскольку статистика как метод исследования имеет дело с данным, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.
Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным. Примеры статистических гипотез в педагогических исследованиях:
Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.
Гипотеза 2. Усвоение начального курса математики не имеет существенных различий у учащихся , начавших обучение с 6 или 7 лет.
Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.
Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п. Примером нулевой гипотезы в педагогике является утверждение о том, что различие в результатах выполнения двумя группами учащихся одной и той же контрольной работы вызвано лишь случайными причинами.
Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Так, для упомянутого выше примера гипотезы Н0 в педагогике одна из возможных альтернатив Н1 будет определена как: уровни выполнения работы в двух группах учащихся различны и это различие определяется влиянием неслучайных факторов, например, тех или других методов обучения.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Так как проверку производят статистическими методами, то данная проверка называется статистической.
При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:
— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);
— можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).
Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Проиллюстрируем вышесказанное на следующем примере.
Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.
Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).
Ошибки двух видов, связанные с действиями а1 и а2 совершенно различны, различна и важность избежания их. Сначала рассмотрим случай, когда применяется действие а1, в то время когда предпочтительнее а2. Лекарство опасно для пациента, в то время как оно признано безопасным. Ошибка этого вида может вызвать смерть пациентов, употребляющих этот препарат. Это ошибка первого рода, так как нам важнее ее избежать.
Рассмотрим случай когда предпринимается действие а2, в то время когда а1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.
Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).
Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).
Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:
первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого эксперимента;
второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;
третий уровень — 0,1%, т. е. допускается риск ошибиться только в одном случае из тысячи.
Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется. В педагогических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5% уровень значимости.
Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.
Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.
Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.
4.2 Общие принципы проверки статистических гипотез
Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:
1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)
2. выбирается статистика критерия (Т)
3. ищется область допустимых значений
4. по исходным данным вычисляется значение статистики Т
5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это основной принцип проверки всех статистических гипотез.
Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.
В современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные буквой P, могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7 0,23 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне 12 тысячных. Это достоверный результат.
При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.
Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.
Число степеней свободы у какого-либо параметра определяют как число опытов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.
Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.
4.3 Понятие гипотезы в педагогике
Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:
— соответствие фактам, на основе которых и для обоснования которых она создана
— проверяемость
— приложимость к возможно более широкому кругу явлений
— относительная простота.
В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство.
Педагогическая гипотеза (научное предположение о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статистической науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.
Возможны два типа гипотез: первый тип — описательные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные: в них дается объяснение возможным следствиям из определенных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объясняется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объяснительные гипотезы выводят исследователей на предположения о существовании определенных закономерных связей между явлениями, факторами и условиями.
Гипотезы в педагогических исследованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.
Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.
Ошибки I и II рода при проверке гипотез, мощность
Общий обзор
Принятие неправильного решения
Мощность и связанные факторы
Проверка множественных гипотез
Общий обзор
Большинство проверяемых гипотез сравнивают между собой группы объектов, которые испытывают влияние различных факторов.
Например, можно сравнить эффективность двух видов лечения, чтобы сократить 5-летнюю смертность от рака молочной железы. Для данного исхода (например, смерть) сравнение, представляющее интерес (например, различные показатели смертности через 5 лет), называют эффектом или, если уместно, эффектом лечения.
Нулевую гипотезу выражают как отсутствие эффекта (например 5-летняя смертность от рака молочной железы одинаковая в двух группах, получающих разное лечение); двусторонняя альтернативная гипотеза будет означать, что различие эффектов не равно нулю.
Критериальная проверка гипотезы дает возможность определить, достаточно ли аргументов, чтобы отвергнуть нулевую гипотезу. Можно принять только одно из двух решений:
- отвергнуть нулевую гипотезу и принять альтернативную гипотезу
- остаться в рамках нулевой гипотезы
Важно: В литературе достаточно часто встречается понятие «принять нулевую гипотезу». Хотелось бы внести ясность, что со статистической точки зрения принять нулевую гипотезу невозможно, т.к. нулевая гипотеза представляет собой достаточно строгое утверждение (например, средние значения в сравниваемых группах равны ).
Поэтому фразу о принятии нулевой гипотезы следует понимать как то, что мы просто остаемся в рамках гипотезы.
Принятие неправильного решения
Возможно неправильное решение, когда отвергают/не отвергают нулевую гипотезу, потому что есть только выборочная информация.
Верная гипотеза | |||
---|---|---|---|
H0 | H1 | ||
Результат применения критерия |
H0 | H0 верно принята | H0 неверно принята (Ошибка второго рода) |
H1 | H0 неверно отвергнута (Ошибка первого рода) |
H0 верно отвергнута |
Ошибка 1-го рода: нулевую гипотезу отвергают, когда она истинна, и делают вывод, что имеется эффект, когда в действительности его нет. Максимальный шанс (вероятность) допустить ошибку 1-го рода обозначается α (альфа). Это уровень значимости критерия; нулевую гипотезу отвергают, если наше значение p ниже уровня значимости, т. е., если p < α.
Следует принять решение относительно значения а прежде, чем будут собраны данные; обычно назначают условное значение 0,05, хотя можно выбрать более ограничивающее значение, например 0,01.
Шанс допустить ошибку 1-го рода никогда не превысит выбранного уровня значимости, скажем α = 0,05, так как нулевую гипотезу отвергают только тогда, когда p< 0,05. Если обнаружено, что p > 0,05, то нулевую гипотезу не отвергнут и, следовательно, не допустят ошибки 1-го рода.
Ошибка 2-го рода: не отвергают нулевую гипотезу, когда она ложна, и делают вывод, что нет эффекта, тогда как в действительности он существует. Шанс возникновения ошибки 2-го рода обозначается β (бета); а величина (1-β) называется мощностью критерия.
Следовательно, мощность — это вероятность отклонения нулевой гипотезы, когда она ложна, т.е. это шанс (обычно выраженный в процентах) обнаружить реальный эффект лечения в выборке данного объема как статистически значимый.
В идеале хотелось бы, чтобы мощность критерия составляла 100%; однако это невозможно, так как всегда остается шанс, хотя и незначительный, допустить ошибку 2-го рода.
К счастью, известно, какие факторы влияют на мощность и, таким образом, можно контролировать мощность критерия, рассматривая их.
Мощность и связанные факторы
Планируя исследование, необходимо знать мощность предложенного критерия. Очевидно, можно начинать исследование, если есть «хороший» шанс обнаружить уместный эффект, если таковой существует (под «хорошим» мы подразумеваем, что мощность должна быть по крайней мере 70-80%).
Этически безответственно начинать исследование, у которого, скажем, только 40% вероятности обнаружить реальный эффект лечения; это бесполезная трата времени и денежных средств.
Ряд факторов имеют прямое отношение к мощности критерия.
Объем выборки: мощность критерия увеличивается по мере увеличения объема выборки. Это означает, что у большей выборки больше возможностей, чем у незначительной, обнаружить важный эффект, если он существует.
Когда объем выборки небольшой, у критерия может быть недостаточно мощности, чтобы обнаружить отдельный эффект. Эти методы также можно использовать для оценки мощности критерия для точно установленного объема выборки.
Вариабельность наблюдений: мощность увеличивается по мере того, как вариабельность наблюдений уменьшается.
Интересующий исследователя эффект: мощность критерия больше для более высоких эффектов. Критерий проверки гипотез имеет больше шансов обнаружить значительный реальный эффект, чем незначительный.
Уровень значимости: мощность будет больше, если уровень значимости выше (это эквивалентно увеличению допущения ошибки 1-го рода, α, а допущение ошибки 2-го рода, β, уменьшается).
Таким образом, вероятнее всего, исследователь обнаружит реальный эффект, если на стадии планирования решит, что будет рассматривать значение р как значимое, если оно скорее будет меньше 0,05, чем меньше 0,01.
Обратите внимание, что проверка ДИ для интересующего эффекта указывает на то, была ли мощность адекватной. Большой доверительный интервал следует из небольшой выборки и/или набора данных с существенной вариабельностью и указывает на недостаточную мощность.
Проверка множественных гипотез
Часто нужно выполнить критериальную проверку значимости множественных гипотез на наборе данных с многими переменными или существует более двух видов лечения.
Ошибка 1-го рода драматически увеличивается по мере увеличения числа сравнений, что приводит к ложным выводам относительно гипотез. Следовательно, следует проверить только небольшое число гипотез, выбранных для достижения первоначальной цели исследования и точно установленных априорно.
Можно использовать какую-нибудь форму апостериорного уточнения значения р, принимая во внимание число выполненных проверок гипотез.
Например, при подходе Бонферрони (его часто считают довольно консервативным) умножают каждое значение р на число выполненных проверок; тогда любые решения относительно значимости будут основываться на этом уточненном значении р.
Связанные определения:
p-уровень
Альтернативная гипотеза, альтернатива
Альфа-уровень
Бета-уровень
Гипотеза
Двусторонний критерий
Критерий для проверки гипотезы
Критическая область проверки гипотезы
Мощность
Мощность исследования
Мощность статистического критерия
Нулевая гипотеза
Односторонний критерий
Ошибка I рода
Ошибка II рода
Статистика критерия
Эквивалентные статистические критерии
В начало