Радиационное поражение

Первая помощь при радиационном поражении

Начиная с 2004 года, в государствах-участниках СНГ 26 апреля отмечается как Международный день памяти жертв радиационных аварий и катастроф. Самая крупная в мире ядерная катастрофа произошла в ночь на 26 апреля 1986 года в украинском городе Чернобыль. Радиацией была загрязнена территория площадью почти 160 тысяч квадратных километров: северная часть Украины, Белоруссия и запад России. В ликвидации последствий аварии участвовали более 600 тысяч специалистов. Сразу после катастрофы от лучевой болезни погиб 31 ликвидатор. Отдаленные последствия облучения и по сей день становятся причиной гибели людей. Поэтому очень важно знать, как вести себя в случае, если вы оказались в зоне поражения радиацией.

Признаки радиационного поражения

Как следствие влияния ионизирующего излучения в организме образуются вещества, которые обладают высокой химической активностью. Они нарушают молекулярные связи на клеточном уровне, в первую очередь, в клетках кроветворения, кишечного эпителия, половых желез. Степень радиационного поражения зависит от вида ионизирующего излучения (гамма-излучения, нейтронного и т.д.), полученной дозы, времени облучения, возраста и пола пострадавшего.

Начальный период радиационных поражений длится от нескольких часов до нескольких суток. Его симптомы: покраснение кожных покровов, слабость, тошнота, рвота, головная боль, повышением температуры тела.

Следующий – скрытый период радиационных поражений — длится от 2 до 4–5 недель. Его симптомы: интоксикация, кровотечения (чаще – носовые), инфекционные осложнения как следствие слабого иммунитета.

Что делать при радиационном поражении

1. Выполнить те мероприятия, от которых в данный момент зависит жизнь пострадавшего (сделать искусственное дыхание, непрямой массаж сердца, вывести из обморока и т.д.).

2. Исключить или уменьшить внешнее гамма-облучение (перенести пострадавшего в специальное убежище, а за неимением его – в подвал, погреб или любое здание из кирпича или бетона).

3. Снять и уничтожить одежду пострадавшего (с целью предотвращения дальнейшего воздействия радиоактивных веществ на кожу и слизистые оболочки), а если это невозможно — провести частичную санитарную обработку и дезактивацию одежды и обуви.

4. Промыть пострадавшему глаза, прополоскать рот и промыть желудок, после чего дать выпить любой адсорбент (например, 5-10 таблеток активированного угля).

5. Одеть на пострадавшего респиратор или ватно-марлевую повязку (за неимением таковых — закрыв его рот и нос полотенцем, платком или шарфом).

6. При первой возможности обратиться за медицинской помощью к врачу.

Обратите внимание

  • По сигналам оповещения населения о радиационной угрозе необходимо незамедлительно укрыться в защитных сооружениях. Это может полностью защитить или значительно ослабить действие проникающей радиации.
  • На территории, зараженной радиоактивными веществами, нельзя принимать пищу, пить воду из природных источников и ложиться (садиться) на землю.
  • Не стоит без контроля врача принимать в большом количестве препараты йода.
  • Прием зеленого чая, антиоксидантов и адаптогенов способствуют выведению из организма радионуклидов.

Радиационная защита и профилактика;

Радиационное воздействие на человека и природу

Радиационное воздействие на человека заключается в ионизации тканей его тела и возникновении лучевой болезни. Степень поражения зависит от дозы ионизирующего излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Прежде всего поражаются кроветворные органы, в результате чего наступает кислородный голод тканей, резко снижается иммунная защищенность организма, ухудшается свертываемость крови.

При организации радиационной защиты производственного персонала, формирований ГО и населения основные усилия сосредоточиваются на исключении или уменьшении воздействия ИИ на них, что достигается укрытием в защитных сооружениях, уменьшением времени пребывания в зонах радиоактивного загрязнения и эвакуацией в безопасные районы. Эти способы защиты — составная часть комплекса мероприятий, проводимых в интересах обеспечения защиты людей в зонах радиоактивного загрязнения, который включает:

выявление и оценку радиационной обстановки;

оповещение населения и возникшей опасности;

ввод в действие режимов радиационной защиты;

проведение радиационной профилактики;

организацию дозиметрического контроля;

дезактивацию участков дорог, сооружений, технологического оборудования;

эвакуацию производственного персонала и населения;

санитарную обработку;

ограничение доступа в загрязненные районы;

защиту органов дыхания и кожи;

простейшую обработку продуктов питания;

перевод сельскохозяйственных животных на незагрязненные пастбища;

введение посменной работы на объектах с высокими мощностями доз излучения.

Для снижения последствий воздействия ионизирующих излучений на организм человека применяются противорадиационные препараты. Это лекарственные средства, повышающие устойчивость организма к воздействию ИИ или снижающие тяжесть клинического течения лучевой болезни. Кроме того, радиопротекторы ослабляют ранние симптомы поражения радиацией — тошноту и рвоту.

Противорадиационным эффектом обладает группа химических веществ, которые имеют в своем составе сульфгидрильные группы (SH). К числу этих веществ относятся цистеин, цистамин, цистофос и другие.

Для профилактики лучевой болезни гражданская оборона располагает препаратом цистамином. Он изготавливается в виде таблеток, которые есть в аптечке индивидуальной АИ-2. Этот препарат ослабляет эффект радиоактивного облучения в 1,3-1,5 раза. Однако применение его после облучения защитного действия не оказывает.

Особое место в противорадиационной профилактике человека при действиях на местности, загрязненной радиоактивными продуктами выброса ЯЭР при их авариях, занимает йодная профилактика. Это обусловливается тем, что, в отличие от ядерного взрыва, в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131 (период полураспада — 8 дней). Попадая в организм человека через незащищенные органы дыхания или с пищей, он сорбируется щитовидной железой и поражает ее.

Наиболее эффективным методом защиты является прием внутрь лекарственных препаратов стабильного йода (йодная профилактика) — йодистого калия в таблетках (иногда в порошках).

Максимальный защитный эффект достигается при заблаговременном или одновременном с поступлением радиоактивного рода приеме стабильного аналога.

Защитный эффект препарата резко снижается в случае его приема спустя 2 часа после поступления в организм радиоактивного йода. Однако даже через 6 часов после разового поступления йода-131 прием препарата стабильного йода может снизить дозу облучения щитовидной железы примерно в 2 раза.

Зависимость защитного эффекта от времени приема препаратов стабильного йода приведена в таблице.

Радиационные повреждения

Биологическое действие ионизирующих излучений

МЕХАНИЗМ ВОЗДЕЙСТВИЯ РАДИАЦИИ НА МОЛЕКУЛЫ И КЛЕТКИ

Ионизирующее излучение обладает высокой энергетической активностью. Оно способно разрывать любые химические связи и индуцировать длительно протекающие реакции. Реакции вовлекают в химические превращения сотни и тысячи молекул. Первичное действие излучений на организм может быть непосредственным и косвенным.

Прямое действие ионизирующих излучений вызывает ионизацию атомов и молекул, образование ионов, возникновение возбужденных атомов, появление радикалов. Активные молекулы и обломки молекул индуцируют различные химические реакции, повреждая комплексы клеток.

Косвенное действие излучений заключается в том, что образованные радикалы воды и пероксиды вступают в химические реакции с молекулами белка, с липидами и т.д. и приводят к структурным изменениям тканей и клеток.

Таблица 2.1.

Время Эффект воздействия
1. 10-24 — 10-4с 2. 10-15 — 10-8 с Поглощение энергии (рентгеновкое, гамма, нейтронное излучения) Поглощение энергии (электроны, протоны, альфа-частицы)
2. 10-12 — 10-8 с Физический и химический этапы. Перенос энергии в виде ионизации на первичной траектории. Ионизация и электронное возбуждение молекул
3. 10-7 — 10-5 с несколько часов Химические повреждения. Прямое действие Косвенное действие. Образование свободных радикалов из воды. Возбуждение молекул до теплового равновесия.
4. Микросекунды, секунды, минуты, несколько часов Биомолекулярные повреждения. Изменения молекул белков, нуклеиновых кислот под влиянием процессов обмена
5. Минуты, часы, недели Ранние биологические и физиологические эффекты. Биохимические повреждения. Гибель клеток, гибель отдельных животных
6. Годы, столетия Отдаленные биологические эффекты. Стойкое нарушение функций. Генетические мутации, действие на потомство. Соматические эффекты: рак, лейкоз, сокращение продолжительности жизни, гибель организма

Таблица 2.2.

Уровень биологической организации Радиационные повреждения
Молекулярный Повреждение ферментов, ДНК, РНК, нарушение обмена веществ
Субклеточный Повреждение клеточных мембран, ядер, хромосом, митохондрий, лизосом
Клеточный Остановка деления и гибель клеток, трансформация в злокачественные клетки
Тканевой, органный Повреждение центральной нервной системы, костного мозга, желудочно-кишечного тракта
Организменный Смерть или сокращение продолжительности жизни
Популяционный Изменение генетических характеристик в результате мутаций

Молекула воды

Наиболее многочисленными в организме человека являются молекулы воды. При облучении молекулы воды радиационным излучениями происходит ионизация молекулы воды, т.е нейтральная молекула воды расщепляется на положительный ион НО+ и свободный электрон, которые вступая во взаимодействия образуют различные радикалы:

Н2О Н2О+ + е– Н2О* Н* + ОН*

Н2О Н+ + ОН* Н* + ОН* Н2О*

Н2О + е- Н2О* ОН* + ОН* Н2О2

Н2О+ + Н2О Н3О+ + ОН*

Свободные радикалы Н*, ОН* особенно химически активны. Время их жизни 10-15с. За это время они либо реагируют между собой с образованием молекулы воды, пероксидов водорода, либо с растворенным субстратом.

Продукты радиолиза воды (пероксид водорода) вступают в реакцию с липидами, белками, что приводит к гибели тканевых элементов, разрушению надклеточных структур (нитей хроматина), происходит разрыв углеродных связей, нарушения ферментативных систем, синтеза ДНК, белка. Нарушаются обменные процессы в организме. В связи с нарушением обмена веществ и энергии прекращается и замедляется рост тканей, наступает гибель клеток. Всасывание продуктов клеточного распада вызывает отравление организма, что приводит к преждевременному старению.

Наша справка. О степени и органах отравления можно судить, учитывая, что в мышцах 50% воды, в костях — 13% воды, в печени — 16% воды, в крови — 5% воды. Особенно опасен атомарный кислород, разрушающий мембраны клеток. Следует отметить, что присутствие кислорода в момент облучения клетки приводит к усилению лучевого поражения примерно в три раза (кислородный эффект).

В организме человека имеются гигантские молекулы — это нуклеиновые кислоты, белки и полисахариды. Основу жизни на Земле составляет молекула ДНК (дезоксирибонуклеиновой кислоты). Она входит в состав клеток.

М о л е к у л а Д Н К

Из основ биологии известно, что молекула ДНК — это хранитель генетической информации и она же «руководит» синтезом белка в соматических клетках. Она является составной частью всех живых организмов, входит в состав хромосом, которые имеются в ядре клетки. При облучении молекулы ДНК она возбуждается в целом, но из-за миграции энергии в молекуле происходит разрыв в самом слабом месте, а именно рвутся водородные связи между отдельными участками молекулы.

Около 7% поглощенной дозы приходится на ядерную ДНК. Механизм миграции энергии заключается в том, что при выбивании электрона происходит миграция дефектного участка по полинуклеотидной цепи до участка с повышенными электрон-донорными свойствами. Такое место — чаще всего участок локализации тимина или цитозина, где и образуются свободные радикалы этих оснований. При косвенном действии излучений именно на этих участках происходит реакция с продуктами радиолиза воды.

Если между нуклеотидами происходят однонитчатые разрывы, то работает механизм репарации (восстановления) под генетическиским контролем.

Примечание. Между нуклеотидами ковалентные водородные связи (связь с помощью двух электронов).

Установлено, что в молекуле может быть восстановлено до 7 разорванных связей в однонитиевых разрывах и поражения генов молекулы не наблюдается.

Примечание. Способность молекулы ДНК восстанавливать одиночные разрывы между нуклеотидами необходимое условие выживания в условиях постоянного естественного облучения радиацией.

Но если количество однонитиевых разрывов больше 7 или имеются двухнитиевые разрывы, то происходят хромосомные аберрации (разорванные концы и целые фрагменты в дальнейшем «склеиваются» в новых сочетаниях, и закодированная в генах информация искажается или теряется совсем.

По мере накопления дозы облучения растет и количество хромосомных аберраций по линейно-квадратичному закону (рис.2.2.) и зависит от вида облучения (рис.2.3).

Рис.2.2. Механизм поражения биологической молекулы при прохождении ионизирующих излучений

Таким образом, в результате аберраций искажаются гены, возможна и гибель

молекулы ДНК. Находясь в составе хромосом соматической клетки, молекулы ДНК могут вызвать бесконтрольное деление, приводящее к раку.

Молекула белка

Ученые считают, что именно белок, как одна из молекул жизни появилась первой на Земле.

Белок — это высокомолекулярное орга­ническое соединение, построенное из 20 аминокислот. Аминокислоты появились на Земле, когда в атмосфере появились метан, аммиак, пары воды. Воздействие ультрафиолетового солнечного излучения привело к образованию формальдегида, затем цианистого водорода. Именно они являются ключом к разгадке появления белков и нуклеиновых кислот. В 1953 году в Чикаго американский ученый Миллер экспериментально установил, что если подвергать воздействию электрическим зарядом смесь метана, воды и водорода можно получить до 2% различных аминокислот. Из 20 аминокислот в организме человека синтезируется только 12, остальные 8 в готовом виде поступают в организм вместе с пищей. Белки в организме разнообразны. Их имеется свыше 10 миллионов и выполняют они разные функции: структурные, регуляторные (гормоны), каталитические (ферменты), защитные (антитела), транспортные (гемоглобин), энергетические и др.

Постоянное обновление белка лежит в основе обмена веществ и он играет важную роль в жизнедеятельности организма. До 20% поглощенной энергии облучения связано с повреждением белка. При облучении молекул белка ионизирующими излучениями она возбуждается в целом и за счет миграции энергии (аналогично в молекуле ДНК) разрыв происходит в наиболее слабых местах, а именно в связях между аминокислотами, которые могут быть ионными, ковалентными и с участием воды. К сожалению, в отличие от молекулы ДНК, молекула белка системы защиты от радиации не имеет.

Таким образом, в боковых цепях аминокислот возникают свободные радикалы. Такие события происходят в результате прямого действия ионизирующих излучений. При косвенном действии образование свободных радикалов происходит при взаимодействии белковых молекул с продуктами радиолиза воды. Образование свободных радикалов влечет за собой изменения структуры белка:

— разрыв водородных, гидрофобных, дисульфидных связей;

— модификация аминокислот в цепи;

— образования сшивок и агрегатов;

— нарушение вторичной и третичной структуры белка.

Такие нарушения в структуре белка приводят к нарушению его функций. Но большое количество молекул белка в организме, их постоянное обновление позволяет на биологическом уровне противостоять радиации с учетом степени их облучения.

Большая разновидность белков, разные размеры, количество, разные функции вызывают при облучении и разные последствия. Например, только ферментов, ускоряющих химические реакции более 1000. Разрушение отдельных из них приводит к угнетению функций отдельных систем. Последствия облучения во многом зависят от структуры белка.

Различают первичную, вторичную, третичную и четвертичную структуру белка. Наиболее подвержена облучению четвертичная структура и менее подвержена первичная структура. Это объясняется их прочностью. О последствиях облучения белка можно судить только, если известен тип белка, вид и время облучения.

Л и п и д ы

Липиды это жироподобные вещества и жиры, плохо растворимые в воде. Из них в частности построены клеточные перегородки (мембраны). В связи с тем, что липиды плохо проводят тепло, они выполняют защитную функцию, они также играют и роль запасных питательных веществ в организме человека.

При облучении липидов ионизирующими излучениями его последствия во многом зависят от того, какие именно липиды облучаются. Если липиды мало участвуют в процессах обмена, то они мало влияют на здоровье человека.

Подробней действие ионизирующих излучений на липиды следующее.

Под влиянием облучения происходит образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с нативными жирными кислотами. Это процесс перекисного окисления липидов. Так как липиды — основа биомембран, то перекисное окисление повлечет за собой изменение их свойств. А поскольку клетка представляет собой систему взаимосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, то в клетке нарушаются биохимические процессы. Выражено нарушение энергетического обмена, что связано с повреждением митохондрий. Нарушение целостности наружной мембраны клетки приводит к сдвигу ионного баланса клетки из-за выравнивания концентраций натрия и калия (в клетке — повышенное количество калия, в межклеточном пространстве — натрия).

У г л е в о д ы

Общая формула углеводов может быть представлена в виде Сn(H2O)m. Учитывая, что молекула углерода более устойчива к облучению, чем молекула воды, то при облучении возникают радикалы воды, о свойствах которых уже говорилось ранее. Учитывая, что углеводы это источник энергии в организме, то при их разрушении такой источник исчезает, что приводит к угнетению многих жизненно важных систем организма.

Более подробно воздействие ионизирующих излучений на углеводы следующее. Под действием излучения происходит отрыв атома водорода от кольца углеводной молекулы, образуются свободные радикалы, а затем перекиси. Из продуктов распада углеводов — глицеринового — синтезируется метилглиоксаль — вещество, ингибирующее синтез ДНК и белка, и подавляющее деление клеток. Чувствительна к облучению и гуалуроновая кислота, являющаяся составным элементом соединительной ткани.

К л е т к а

Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живой материи, ее элементарная живая система. В 1г человеческой ткани примерно 600 миллионов клеток, у новорожденного человека число клеток составляет 2х1012, которое еще больше возрастает по мере роста организма.

Клетка имеет достаточно сложное строение и изучается в биологии.

В организме человека клетки выполняют разные функции. Различают клетки: половые, соматические, жировые, лейкоциты, лимфоциты и др. Радиобиологический закон выделяет два типа клеток: клетки делящиеся и малодифференцированные ткани относятся к радиочувствительным. Такими являются кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и плоский эпителий.

Заметим, что у детей все клетки делятся до окончания роста, а у взрослых делятся только клетки кожи, желудочно-кишечного тракта, глаз и крови. Остальные клетки периодически обновляются.

Клетки же неделящиеся и дифференцированные ткани относят к радиоустойчивым. К ним относят: мозг, мышцы, печень, почки, хрящи, связки. Исключение в этом списке составляют лимфоциты, несмотря на их дифференциацию и неспособность к делению.

Наибольший вред организму приносит облучение соматических клеток и клеток крови. Рассмотрим в качестве примера вначале соматическую клетку, так как их в организме много. Выделим в клетке только те элементы, которые больше всего подвержены воздействию радиации и вызывают наиболее тяжелые последствия. Поняв механизм воздействия радиации на клетку можно предпринимать меры защиты, которые снизят результаты этого воздействия.

Модель клетки (ее фрагметы) показана на рис.2.4. Клетка состоит из нескольких частей: мембраны, цитоплазмы, ядра, рибосом, митохондрий, транспортных молекул тРНК (рибонукле­иновой кислоты), матричных мРНК, молекул АТФ (аденозинтрифосфата), рибосомных рРНК и других частей, которые на рисунке не показаны. В ядре клетки находится 46 хромосом.

Примечание: в клетке 80% рРНК, 5% — мРНК, 15% — тРНК. Рибосомы — это цеха по производству молекул белка. Матричные (информационные) мРНК «снимают копию» с участков молекул ДНК и доставляют в рибосому информацию о типе белка, который необходимо синтезировать. Транспортные тРНК из тока кровеносных сосудов забирают аминокислоты и транспортируют в рибосомы, где рибосомные рРНК строят белок. Иногда для синтеза белка несколько рибосом объединяются по «команде» мРНК. Обычно в данный момент времени задачу синтеза белка решают только около 10% рибосом, остальные «отдыхают».

При облучении клетки, например, бета-частицами, прежде всего, повреждается мембрана. Если учесть, что давление внутри клетки больше, чем в межклеточном пространстве, то через образовавшиеся бреши будет вытекать цитоплазма. В этом случае ядро вырабатывает ферменты, которые тРНК транспортируют к местам повреждений мембраны и «зашивают» бреши. Таким образом, тРНК вместо того, чтобы заниматься своим делом — транспортировать аминокислоты в рибосомы для синтеза белка, занимаются «ремонтом» мембраны. Если интенсивность облучения превышает некоторый предел, то тРНК задачу «ремонта» мембраны решить не могут и клетка погибает. Дальнейшее проникновение бета-частиц в клетку может вызвать разрушения любых органел. При облучении бета-частицами самих молекул тРНК они повреждаются и не могут выполнять свои функции.

При облучении рибосом, за счет разрушений рибосомной РНК и белка, в рибосоме может быть построен другой белок, который ведет себя как инородное тело. Такое облучение не всегда представляет большую опасность, так как в последующих циклах может быть сформирован и «свой» белок. Повреждение матричных РНК также может привести к формированию «чужого» белка. Если в последующих циклах облучение отсутствует или не приведет к разрушению мРНК, то информация для строительства белка будет достоверной.

Рис.2.4. Модель соматической клетки (фрагмент cинтеза белка)

Наиболее драматичная ситуация возникает, если поражаются хромосомы и их главная часть — молекулы ДНК. В этом случае клетка или погибает или начинает бесконтрольно делиться. Если учесть воздействие ионизирующего излучения и на другие основные органеллы клетки, то можно выделить следующие последствия облучения:

— при облучении ядра клетки возможны: подавление клеточного деления (если клетка делится), двунитчатые разрывы нуклиотидов и хромосомные аберрации, однонитчатые разрывы нуклеотидов и репарация (восстановление) связей, нарушение синтеза ДНК и остановка деления (для делящихся клеток), генные мутации, нарушение транспортной функции и репарация, нарушение синтеза клеточных белков, запуск механизма бесконтрольного деления (в соматических клетках);

— нарушение проницаемости цитоплазматической мембраны;

— цитолиз лизосом (лизосомы — цитоплазматические включения, с которыми связано накопление некоторых ферментов и процессы внутриклеточного пищеварения);

— нарушение энергетического обмена за счет разрушения (повреждения) митохондрий и молекул АТФ (аденозинтрифосфорной кислоты);

— нарушение синтеза белков в рибосомах;

— радиационный автолиз эндоплазматической сети (специальная структура цитоплазмы).

Если обобщить реакцию клетки на облучение (биологическая стадия), то возможны три типа реакции на облучение:

1.Радиационный блок митозов (временная задержка деления);

2. Митотическая (репродуктивная) гибель клетки;

3. Интерфазная гибель клетки.

Наиболее универсальная реакция клетки на воздействие ионизирующих излучений — временная задержка деления (радиационный блок митозов). Длительность его зависит от дозы: на каждый Грей дозы клетка отвечает задержкой митоза в 1 час. Проявляется этот эффект независимо от того, выживет ли клетка в дальнейшем. Причем с увеличением дозы облучения увеличивается не число реагирующих клеток, а именно время деления каждой клетки. Эта реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК.

При больших дозах, которые необходимы только для развития радиационного блока митозов, развивается митотическая гибель клетки. Это относится к клеткам, не делящимся или делящимся редко. В клетке не выражены дегенеративные процессы. Показателем выживаемости клетки является ее способность проходить 5 и более делений.

Варианты митотической гибели: 1) клетка гибнет в процессе одного из первых четырех пострадиационных митозов, невзирая на отсутствие видимых изменений; 2) облученные клетки после первого радиационного митоза формируют так называемые «гигантские» клетки (чаще в результате слияния «дочерних» клеток). Такие клетки способны делиться не более 2 — 3 раз, после чего погибают. Основная причина митотической гибели клетки — повреждение хромосомного аппарата клетки, приводящее к дефициту синтеза ДНК.

Интерфазная гибель клетки наступает до вступления клетки в митоз. Для большинства соматических клеток человека она регистрируется после облучения в дозах в десятки и сотни Грей. Лимфоциты (радиочувствительные клетки) гибнут по этому механизму даже при небольших дозах.

Механизм интерфазной гибели следующий. За счет разрывов в молекуле ДНК нарушается структура хроматина. В мембранах идет процесс перекисного окисления липидов. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК. Повреждение мембраны лизосом приводит к выходу из них ферментов — протеаз и ДНК-аз. Эти ферменты разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведет к выходу из них кальция, который активирует протеазы. Все это приводит к гибели клетки.

Степень разрушения клетки зависит не только от поглощенной дозы, но и ее распределения во времени. Если полученная доза растянута во времени, то ущерб будет меньше. Особенно это касается делящихся клеток. Впрочем, последствия для делящихся клеток во многом зависят от того, на какой фазе деления клетки имело место облучение. Итак, возможны три варианта последствий облучения клетки:

— полное выживание клетки без последствий;

— процесс выживания и деления осложнен и клетка погибает;

— появление живой, но измененной клетки.

Третий случай наиболее опасен. При облучении делящейся соматической клетки возможно развитие рака, так как может быть порожден процесс бесконтрольного деления измененных клеток.

Рассмотрим половую клетку. Первая эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом, особенно чувствительна к облучению. В первые 5 суток гибель зародыша наиболее вероятна, затем могут быть поражения мозга, уродства.

Облучение после органообразования у зародыша вызывает рождение хилого потомства. От радиации обычно быстро гибнут клетки лимфоцитов, незрелые клетки костного мозга, половые железы и клетки хрусталика глаза.

Как уже отмечалось, чувствительны к облучению клетки крови и ее заболевания одна из проблем радиационной безопасности. Рассмотрим подробней.

Наша справка. Кровь — непрозрачная, клейкая жидкость красного цвета, солоноватого вкуса, состоящая из двух частей: плазмы и форменных ферментов — эритроцитов, лейкоцитов и тромбоцитов. Объем плазмы у человека равен 55 -60% общего объема крови. Состоит она на 90 — 91% из воды, 9 — 10% приходится на сухой остаток, в котором имеются белки и соли. В плазме содержатся также глюкоза, молочная кислота, жирные кислоты, ферменты, некоторые микроэлементы.

Основную массу форменных элементов крови составляют эритроциты. Они выполняют ряд важных функций: 1) поглощение кислорода в легких и перенос его в капилляры, поглощение углекислоты в капиллярах тканей и доставка ее в легкие; 2) сохранение активной реакции крови; 3) поддержание ионного состава крови; 4) участие в водно-солевом обмене; 5) адсорбция токсинов.

При облучении крови количество эритроцитов ежесуточно снижается и за месяц их потеря может достигнуть 25% от исходного уровня. В результате развивающаяся анемия замедляет процессы репарации, а дефицит кислорода в костном мозге нарушает его способность восстанавливать кроветворение.

Лейкоциты — типичные ядерные клетки. Они выполняют защитную функцию в борьбе с инфекцией или чужеродным телом.

При облучении ионизирующими лучами количество лейкоцитов уменьшается пропорционально полученной дозе. Сокращение лейкоцитов снижает сопротивляемость организма человека инфекциям.

Лимфоциты — наиболее чувствительный показатель тяжести поражения от ионизирующих излучений. Сокращение числа лимфоцитов наблюдается сразу после облучения и достигает максимума на 1 — 3 сутки. Этим самым подавляется иммунная система.

Тромбоциты играют важную роль в процессе свертывания крови. При облучении радиацией их количество падает, а следовательно появляются проблемы со свертываемостью крови.

Под действием радиации могут возникнуть нарушения кроветворения на различных этапах клеточного обновления. Может быть временное прекращение деления клеток, гибель малодифференцированных клеток, нарушение продолжительности созревания, жизни большинства зрелых функционирующих клеток. Самым серьезным из названных заболеваний является нарушение дифференциации клеток, приводящее к лейкозу.

Лейкоз — это болезнь, характеризующаяся избыточным содержанием в крови неполноценных белых клеток (эритроцитов, лейкоцитов, тромбоцитов). Эту болезнь называют «раком» крови или белокровием.

Выводы: 1. Молекулы ДНК и клетки человека могут противостоять радиоактивному облучению, но только при определенной интенсивности облучения и времени действия.

2. Гибель отдельных клеток не означает гибели органа или организма в целом, вместо погибшей стимулируется деление новых. Появление живой, но измененной клетки вызывает опасность развития рака.

3. Наиболее разрушительными для организма человека являются радикалы воды.

Особенностью раковых заболеваний является то, что у них значительный латентный период, т.е. рак, проявляется не сразу, а через значительное время. Особенности заболевания различными видами рака демонстрируется рис. 2.5.

  1. Закрыть себе и пострадавшему рот и нос марлевой маской или респиратором; закрыть голову, открытые участки тела.
  2. Если источник радиации известен, вынести или вывести пострадавшего из очага поражения.
  3. Обратиться за медицинской помощью.

Причины радиационного поражения

Причина радиационного поражения — это воздействие ионизирующего излучения, которое представляет собой невидимые невооруженному глазу потоки микроскопических частиц или лучей.

К ионизирующему относится электромагнитное излучение (рентгеновские и гамма-лучи) и так называемое корпускулярное (поток частиц атома — альфа- и бета-излучение, поток нейтронов или протонов). Эти виды проникающей радиации отличаются между собой глубиной, на которую способны проникать в ткани и эффектами, которые вызывает то или иное излучение в живых клетках.

Радиационное поражение может возникнуть при нарушении правил техники безопасности во время работы с радиоактивными веществами, поломке защитных систем у стационарных источников излучения (например, рентгеновский аппарат), авариях на радиационно опасных объектах, применении ядерного оружия.

Симптомы радиационного поражения

Симптомы воздействия на организм ионизирующего излучения зависят от целого ряда факторов. К ним относится поглощенная доза радиации, тип излучения, время действия радиоактивных веществ, путь их попадания в организм.

Наиболее типичным проявлением внешнего радиоактивного облучения является лучевая болезнь. В зависимости от полученной дозы радиации она может протекать в четырех формах (костномозговая, кишечная, сосудисто-токсическая, церебральная), причем вероятность выживания существует только при костномозговом варианте.

Основными признаками, позволяющими заподозрить радиационное поражение, считаются внезапно появившаяся головная боль с головокружением, тошнота и рвота, жажда, вялость и апатия. Эти симптомы, в зависимости от дозы облучения, могут проявиться через несколько минут или через несколько часов после облучения.

Позже может присоединиться понос, изменение артериального давления, повышение температуры тела, потеря сознания.

Как правило, после первой реакции на облучение следует период относительного (мнимого) благополучия. Пострадавший при этом чувствует улучшение состояния, может считать себя выздоровевшим.

При облучении больше всего страдают те клетки организма, которые быстро делятся — половые клетки и костный мозг, отвечающий за кроветворение. Поэтому изменения в составе крови, которые фактически отображают угнетение кроветворной функции, являются одним из основных лабораторных признаков лучевой болезни. На этом фоне присоединяется вторичная инфекция и резко повышается вероятность смертельного исхода.

К другим возможным симптомам радиационного поражения относятся ожоги на открытых частях тела, нарушения зрения. Грозным признаком является появление поноса и рвоты с примесью крови через короткое время после облучения.

Лечение радиационного поражения

При вероятности радиационного поражения необходимо, в первую очередь, обезопасить себя и только потом приступать к оказанию первой помощи пострадавшим.

Закройте рот и нос марлевой повязкой, респиратором, шарфом или наденьте противогаз. Прикройте голову капюшоном или плотно завязанной косынкой. Оденьте одежду, максимально закрывающую открытые участки кожи, включая перчатки. Эти меры позволят несколько уменьшить проникновение радиации в организм.

Если известен источник радиации, пострадавшего следует вынести или вывести из зоны радиоактивного заражения. На месте оказывается только неотложная помощь: остановка массивного кровотечения, транспортная иммобилизация в случае перелома. При наличии специальных средств защиты (прорезиненный комбинезон, резиновые сапоги или бахилы, индивидуальная аптечка и так далее) ими следует воспользоваться согласно действующей инструкции.

Из очага радиоактивного заражения пострадавшие поступают на сборный пункт, где им оказывается первая медицинская помощь и проводиться санитарная обработка. Последняя включает в себя дезактивацию людей, находившихся в зоне поражения. Человека обтирают специальными растворами, которые «гасят» радиоактивное излучение, а затем проводят контрольное измерение излучаемого им радиоактивного фона. Это мероприятие направлено на предупреждение дальнейшего облучения самого пострадавшего и находящихся с ним рядом лиц.

На этапе стационара самым важным фактором лечения становится деконтаминация, то есть обеззараживание самого организма, воздуха, которым дышит человек, пищи и так далее. Все эти меры предпринимаются для профилактики возможной инфекции. В ином случае ослабленная облучением иммунная система не справляется даже с привычными для организма микробами, что ведет к тяжелым воспалительным процессам и смертельному исходу.

Использованныее материалы

Военно-полевая терапия. / под ред. Проф. А. Л. Ракова. — Спб: ООО «Издательство ФОЛИАНТ», 2003

Виды радиационных поражений

Различают следующие виды радиационных поражений:

  • — острая лучевая болезнь от внешнего равномерного излучения;
  • — острая лучевая болезнь от внешнего неравномерного излучения;
  • — лучевая болезнь от внутреннего облучения;
  • — местные лучевые поражения;
  • — комбинированные поражения.

Степень тяжести лучевой болезни зависит от поглощенной дозы ионизирующего излучения, которое измеряется в Греях (1 Гр. = 100 рад. ).

Острая лучевая болезнь развивается в связи с однократным или повторным воздействием ионизирующей радиации. В ее течении выделяют четыре периода.

Первый период — период первичной радиации. Развивается через несколько часов после интенсивного лучевого воздействия, причем скорость развития реакции напрямую зависит от интенсивности облучения. Пострадавшие при этом испытывают ощущение головокружения, тошноты и рвоты. Продолжительность периода — от нескольких часов до 1-2 дней.

Второй период — латентный, или видимого благополучия, -также зависит от интенсивности облучения. Чем сильнее пострадал облученный, тем короче период. Он может продолжаться от нескольких дней до 2 недель, но может и отсутствовать, и тогда первый период непосредственно переходит в третий. Во втором периоде, несмотря на видимое благополучие и отсутствие жалоб со стороны больных, в организме происходят многочисленные динамические изменения.

Третий период — период выраженных патологических изменений. Возобновляются понос и рвота. Стул может иметь различный характер — слизистый, водянистый и др. Появляется лихорадка, развивается гингивит или стоматит. Жалобы пострадавших в основном сводятся к недомоганию и расстройству чувствительности. В случаях средней и тяжелой степени поражения отмечается кровоточивость в форме поверхностных петехий и экхимозов, носовых кровотечений, кровотечений из внутренних органов, особенно из кишечника и легких. В кишечнике развиваются язвенно-некротические изменения, грозящие обернуться сепсисом. Происходит выпадение волос. Кровоточивость прогрессирует. Развивается поражение миокарда и паренхиматозных органов.

Четвертый период — реконвалесценции — развивается в менее тяжелых случаях и может продолжаться очень долго. В этом периоде, однако, сохраняется опасность обострения заболевания.

В течении комбинированных радиационных поражений также имеет место определенная периодичность, но, в отличие от течения острой лучевой болезни, в нем отсутствует второй, «светлый», период: на этом отрезке времени доминируют клинические проявления нелучевых поражений (механических, термических и др.).

Первый период комбинированного радиационного поражения -период первичных реакций на лучевые и нелучевые повреждения. Признаки первичной реакции на лучевую травму, как правило, замаскированы более выраженными проявлениями механических травм и ожогов. Лишь при больших дозах облучения, когда лучевой компонент является ведущим, первичная реакция на него может быть выраженной.

Во втором периоде комбинированного радиационного поражения преобладают клинические проявления нелучевых поражений. В этом периоде клиническая картина зависит от тяжести всех составляющих. Нередки инфекционные осложнения. Продолжительность скрытого периода острой лучевой болезни укорачивается.

Третий период — период преобладания лучевого компонента. При средних и тяжелых степенях лучевого воздействия самочувствие пострадавших ухудшается: поднимается температура, нарастает слабость, развиваются некротические ангины, гингивиты, стоматиты, энтероколиты, пневмонии и пр. Резко увеличивается риск генерализации инфекции и развития сепсиса. Ухудшается течение раневого процесса в области ран и ожогов. Возможно расхождение краев уже заживших ран, повышается ранимость и кровоточивость.

Четвертый период — период реабилитации. Восстановление нарушенных функций идет медленно. На фоне остаточных явлений лучевого поражения большое значение приобретают последствия ран и ожогов (трофические язвы, остеомиелиты, рубцовые деформации, контрактуры).

Более тяжелое течение каждого компонента комбинированного радиационного поражения по сравнению с таким же по тяжести, но изолированным поражением, обусловлено наличием синдрома взаимного отягощения. Многокомпонентные комбинированные поражения протекают, как правило, тяжелее, чем двухкомпонентные. При комбинированном радиационном поражении снижается минимальная доза облучения, при которой появляются симптомы лучевой болезни. Снижается и максимальная доза поглощенного облучения, при которой возможен благоприятный исход. Наличие комбинированных поражений утяжеляет течение лучевой болезни на одну степень.

При комбинированных радиационных поражениях замедляется сращение переломов, образование костной мозоли происходит медленно, проявляется склонность к формированию ложных суставов, иногда происходит рассасывание уже появившейся костной мозоли. Лучевое поражение угнетает репаративные процессы в ранах: ухудшается формирование грануляционной ткани, резко замедляется эпителизация. Длительное существование обширных раневых поверхностей, в свою очередь, приводит к истощению больного.

Объем, содержание и последовательность лечебных мероприятий при комбинированных радиационных поражениях зависят от медико-тактической обстановки, возможностей этапов медицинской эвакуации, и, в первую очередь, от периода комбинированного радиационного поражения.

В течение первого периода при механо-радиационных поражениях основные усилия должны быть сосредоточены на проведении неотложной медицинской помощи по поводу травм: устранении асфиксии, остановке кровотечения, нормализации функции сердца, легких и других жизненно важных органов. Проводится интенсивная терапия, по жизненным показаниям выполняются оперативные вмешательства. При наличии ожогов медицинская помощь заключается в обезболивании, наложении повязок и проведении интенсивной терапии. У пострадавших с комбинированной радиационной травмой выполняется также профилактика и купирование первичной лучевой реакции в сочетании с дезинтоксикационной терапией. При заражении кожных покровов и обмундирования продуктами ядерного взрыва к неотложным мероприятиям добавляется санитарная обработка пострадавших.

Второй период — период преобладания нелучевых компонентов поражения — необходимо максимально использовать для выполнения мероприятий квалифицированной медицинской помощи, квалифицированной и специализированной хирургической помощи в полном объеме. Хирург, максимально используя методы ускорения заживления ран, должен стремиться к тому, чтобы заживление произошло до наступления разгара лучевой болезни. При переломах костей необходима возможно более ранняя репозиция и фиксация отломков, поскольку процесс консолидации перелома в этот период может протекать благополучно. Активное хирургическое лечение ожогов целесообразно при ограниченных глубоких ожогах (не более 3-5% поверхности тела) и легкой лучевой болезни. Для предупреждения раневой инфекции и других осложнений в этот период следует профилактически назначать антибиотики и иные медикаментозные средства.

В третьем периоде — преобладания лучевого компонента -должно проводиться комплексное лечение лучевой болезни с целью купирования гематологического, геморрагического, гастроинтестинального, астеноневротических, токсемических синдромов, профилактики и лечения инфекционных осложнений, сердечно-сосудистой недостаточности. Хирургические вмешательства выполняются только по жизненным показаниям. В этом периоде использование всех видов швов и кожной пластики бесполезно и опасно.

В четвертом периоде — реконвалесценции — осуществляется терапия остаточных явлений лучевого поражения и оперативное лечение последствий травм и ожогов. Проводится комплекс реабилитационных мероприятий, к которым относятся усиленное лечебное питание в сочетании с анаболическими средствами, общетонизирующие препараты, стимуляторы гемопоэза, лечебная физкультура, физиотерапия и др.

Особое место в лечении пострадавших с комбинированными радиационными травмами занимает вопрос хирургической обработки ран, загрязненных радиоактивными веществами.

Степень резорбции радиоактивных веществ зависит от их химического состава. Наиболее выраженной способностью к резорбции обладают радионуклиды щелочных и щелочноземельных элементов, галогенов, кобальта и ряда других элементов, находящихся в ионной форме. Во многом степень резорбции радиоактивных веществ определяется их растворимостью в биологических средах организма. Другим фажным фактором, от которого зависит резорбция вещества, является состояние кровои лимфообращения в области раны. Большая травматизация мягких тканей, развитие тканевого некроза, ишемические явления приводят к снижению инкорпорации радиоактивных веществ в организм. Степень резорбции зависит также от вида и характера раны и возрастает в следующей последовательности: ожоги термические — ожоги химические — ссадины — рваные раны резаные раны -колотые раны.

Всасывание радиоактивных веществ через ожоги зависит от морфологических изменений в коже, возникших в результате термического воздействия. При ожоге I ст. эпидермис сохранен, проницаемость для химических веществ не изменена, и поэтому степень резорбции радиоактивных веществ будет практически такой же, как и в случае с интактной кожей. При ожогах II ст. на поверхности кожи происходит отслойка большей или меньшей части эпидермиса, образуются пузыри. Если покрышка пузыря сохранена, резорбция радиоактивного вещества возрастает незначительно; в обратном случае она сильно увеличивается. При ожогах IIIа, IIIб и IV ст. на проницаемость кожи для радиоактивных веществ существенно влияет природа ожоговой травмы. Так, при ожогах, вызванных высокотемпературными агентами (пламенем, напалмом и др. ), на поверхности раны формируется плотная корка ожогового струпа, малопроницаемая для радиоактивных веществ. Рыхлый влажный струп, образующийся под воздействием горячих жидкостей и пара, в гораздо большей степени проницаем для радиоактивных веществ. При ожогах IIIа ст. иногда образуются толстостенные пузыри, покрышка которых легко повреждается и отслаивается. Попадание радиоактивных веществ на такого рода раны приводит к выраженной резорбции веществ через раневые поверхности. При глубоких ожогах IIIб и IV ст. под плотной коркой ожогового струпа развивается отек, происходит тромбирование сосудов, в результате чего резорбция радиоактивных веществ будет минимальной.

В отличие от термических, при химических ожогах наблюдается проникновение химического агента (а вместе с ним и радиоактивного вещества) на существенно большую глубину, которая определяется природой агрессивного агента и его концентрацией. Щелочи вызывают более глубокие поражения, чем кислоты, поскольку при воздействии последних образуется коагуляционный некроз, препятствующий резорбции радиоактивных веществ.

Резорбция щелочных, щелочноземельных элементов через ссадины в 100-200 раз превышает таковую через неповрежденную кожу. В несколько меньшей мере увеличивается всасывание через ссадины других радиоактивных веществ — редкоземельных элементов, актиноидов, лантаноидов. Высокий уровень всасывания радионуклидов через ссадины кожного покрова обусловлен нарушением барьерной функции кожи вследствие повреждения рогового слоя эпидермиса.

Наибольшая резорбция радиоактивных веществ происходит через резаные и колотые мышечные раны. Техника первичной хирургической обработки ран, зараженных радиоактивными веществами, не имеет принципиальных отличий от техники обработки незараженных ран. Однако в этих случаях особенно важно тщательное удаление из раны нежизнеспособных тканей и инородных тел. Для более полного удаления радиоактивных веществ раны промывают слабыми антисептическими растворами или физиологическим раствором. После обработки рану не следует зашивать — ее необходимо рыхло тампонировать — швы накладывают лишь тогда, когда появляются нормальные грануляции.

Эффективность хирургической обработки ран зависит от вида раны и ее локализации, физико-химического состояния радионуклида, времени осуществления операции и других факторов. Так, хирургическая обработка глубоких кожно-мышечных ран, загрязненных растворимыми и легко резорбируемыми формами радионуклидов, не всегда оказывается эффективной. Возможности иссечения тканей при радиоактивном загрязнении, как правило, ограничены. С другой стороны, чем раньше проведено иссечение тканей в области раны, тем меньше радиоактивных веществ поступит в организм. Следует стремиться выполнить хирургическую обработку ран в течение первого часа после радиоактивного загрязнения. В поздние сроки проводить хирургическую обработку рваных и резаных ран, загрязненных растворимыми формами радиоактивных веществ, вряд ли целесообразно. Наиболее благоприятные условия для возможно более полного удаления радионуклидов имеют место в случае колотых и колото-резаных ран, когда радионуклиды локализованы в небольшом по объему участке.

При хирургической обработке загрязненных радионуклидами ожоговых поверхностей иссекается весь массив ожоговых ран II и IIIа ст. в пределах кожи и (или) подкожной жировой клетчатки. Проводить иссечение ожоговых ран IIIб и IV ст. при наличии твердого струпа нецелесообразно, ибо такого рода поверхности хорошо поддаются дегазации.

При массовом поступлении на ПМП корабля (части) пострадавших с комбинированными радиационными поражениями решающее значение приобретает правильная сортировка пострадавших и, соответственно, установление очередности оказания помощи и эвакуации.

Пострадавшим с комбинированными радиационными поражениями IV ст. тяжести (см. табл. 1) показана только симптоматическая помощь, направленная на облегчение страданий. Они не подлежат эвакуации, поскольку это может лишь ускорить их гибель.