Виды информационных систем

Содержание

Виды информационных систем в организации

Так как имеются различные интересы, особенности и уровни в организации, существуют различные виды информационных систем. Никакая единственная система не может полностью обеспечивать потребности организации во всей информации. Виды информационных систем, лежащих в основе организации: стратегический, управленческий, знания и эксплуатационный, далее разделены на функциональные области типа продажи и маркетинга, производства, финансов, бухгалтерского учета и человеческих ресурсов. Системы создаются, чтобы обслужить эти различные организационные интересы. Различные организационные уровни обслуживают четыре главных типа информационных систем: системы с эксплуатационным уровнем, системы уровня знания, системы уровня управления и системы со стратегическим уровнем.

Системы эксплуатационного уровня поддерживают управляющих операциями, следят за элементарными действиями организации типа продажи, платежей, обналичивают депозиты, платежную ведомость, кредитуют решения и поток материалов на фабрике. Основная цель систем на этом уровне состоит в том, чтобы ответить на обычные вопросы и проводить потоки транзакций через организацию. Чтобы отвечать на эти виды вопросов, информация вообще должна быть легко доступна, оперативна и точна. Системы уровня знания поддерживают работников знания и обработчиков данных в организации. Цель систем уровня знания состоит в том, чтобы помочь деловой фирме интегрировать новое знание в бизнес и помогать организации управлять потоком документов. Системы уровня Эксплуатационный уровень Типы Группы служащих информационных систем знания, особенно в форме рабочих станций и офисных систем, сегодня являются наиболее быстрорастущими приложениями в бизнесе.

Рис. 1.11. Типы информационных систем.

Системы уровня управления разработаны, чтобы обслуживать контроль, управление, принятие решений и административные действия средних менеджеров. Они определяют, хорошо ли работают объекты, и периодически извещают об этом. Например, система управления перемещениями сообщает о перемещении общего количества товара, равномерности работы торгового отдела и отдела, финансирующего затраты для служащих во всех разделах компании, отмечая, где фактические издержки превышают бюджеты.

Некоторые системы уровня управления поддерживают необычное принятие решений. Они имеют тенденцию сосредоточиться на менее структурных решениях, для которых информационные требования не всегда ясны. Эти системы часто отвечают на вопросы: «что, если?». Что произойдет с производственным календарным планом, если мы должны удвоить продажу в декабре? Что случилось бы с нашим дивидендом, если оплата будет отсрочена на шесть месяцев? Ответы на эти вопросы часто требуют новых данных вне организации или данных изнутри, которые не могут быть получены от существующих систем с эксплуатационным уровнем.

Системы стратегического уровня — это инструмент помощи руководителям высшего уровня, которые подготавливают стратегические исследования и длительные тренды в фирме и в деловом окружении. Их основное назначение — приводить в соответствие изменения в условиях эксплуатации с существующей организационной возможностью. Каков будет уровень занятости через пять лет? Каковы длительные промышленные финансовые тренды и где наши подъемы и спады? Какие изделия мы должны производить через пять лет?

Информационные системы могут также быть дифференцированы функциональным образом. Главные организационные функции типа продажи и маркетинга, производства, финансов, бухгалтерского учета и человеческих ресурсов обслуживаются собственными информационными системами. В больших организациях подфункции каждой из этих главных функций также имеют собственные информационные системы. Например, функция производства могла бы иметь системы для управления запасами, управления процессом, обслуживания завода, автоматизированной разработки и материального планирования требований.

Типичная организация имеет системы различных уровней: эксплуатационную, управленческую, знания и стратегическую для каждой функциональной области. Например, коммерческая функция имеет коммерческую систему на эксплуатационном уровне, чтобы делать запись ежедневных коммерческих данных и обрабатывать заказы. Система уровня знания создает соответствующие дисплеи для демонстрации изделий фирмы. Системы уровня управления отслеживают ежемесячные коммерческие данные всех коммерческих территорий и докладывают о территориях, где продажа превышает ожидаемый уровень или падает ниже ожидаемого уровня. Система прогноза предсказывает коммерческие тренды в течение пятилетнего периода — обслуживает стратегический уровень производства, финансов, бухгалтерского учета и человеческих ресурсов.

Каждая система может иметь компоненты, которые используются разными организационными уровнями или одновременно несколькими. Секретарь может находить информацию относительно MIS, средний менеджер может нуждаться в данных анализа из TPS.

Внутри каждого из этих уровней принятия решений исследователи классифицируют решения как структурированные и неструктурированные. Неструктурированные решения — те, в которых принимающий решение должен обеспечить суждение, оценку и проникновение в прикладную область. Каждое из этих решений оригинально, важно, не имеет аналогов или разработанной методики для их принятия. Структурированные решения, наоборот, являются повторяемыми и обычными и имеют определенную процедуру для их принятия, чтобы они не рассматривались каждый раз, как новые. Некоторые решения слабоструктурованны; в таких случаях только часть проблемы имеет четкий ответ, обеспеченный в соответствии с принятой процедурой. Объединение этих двух перспектив принятия решений создает сетку.. Эксплуатационный персонал управления довольно хорошо решает структурированные проблемы. Стратегические планировщики занимаются совсем не структурированными проблемами. Многие из проблем, с которыми сталкиваются работники знания, также довольно неструктурированы. Однако каждый уровень организации содержит и структурированные, и неструктурированные проблемы.

Системы диалоговой обработки запросов (TPS) — основные деловые системы, которые обслуживают эксплуатационный уровень организации. Система диалоговой обработки запросов — компьютеризированная система, которая выполняет и рассчитывает рутинные транзакции, необходимые для проведения бизнеса. Примеры — коммерческие расчеты продаж, системы бронирования мест в гостинице, платежная ведомость, хранение отчетов служащих и отгрузка.

На эксплуатационном уровне задачи, ресурсы и цели предопределены и высокоформализованы. Например, решение о предоставлении кредита клиенту принимается управляющим низшего уровня согласно предопределенным критериям. Единственно, что должно быть определено -соответствует ли клиент критериям.

Системы работы знания и автоматизации делопроизводства

Системы работы знания (KWS) и системы автоматизации делопроизводства (OAS) обслуживают информационные потребности на уровне знаний организации. Системы работы знания помогают работникам знания, в то время как системы автоматизации делопроизводства прежде всего помогают обработчикам данных.

Вообще, работники знания — это люди, обладающие учеными степенями, которые часто имеют такие профессии, как инженер, врач, адвокат и ученые. Их работа состоит прежде всего в создании новой информации и знания. Системы работы знания (KWS) типа научных или инженерных рабочих станций (мест), а также автоматизированных рабочих мест (АРМ) способствуют созданию новых знаний и гарантируют, что новые знания и технический опыт должным образом интегрируются в бизнес.

Обработчики данных обычно имеют меньшее образование и меньше ученых степеней и ближе к обработке, чем к созданию информации Они состоят прежде всего из секретарей, бухгалтеров, делопроизводителей или менеджеров, чья работа должна главным образом использовать или распространять информацию.

Системы автоматизации делопроизводства (OAS) — информационные приложения технологии, разработанные, чтобы увеличить производительность труда обработчиков данных в офисе.

Управляющие информационные системы (MIS) обслуживают управленческий уровень организации, обеспечивая менеджеров докладами, в некоторых случаях с интерактивным доступом к текущей работе организации и историческим отчетам. Обычно они ориентируются почти исключительно на внутренние, не относящиеся к окружающей среде результаты. MIS прежде всего обслуживают функции планирования, управления и принятия решений на управленческом уровне.

MIS суммируют результаты и докладывают относительно основных действий компании На Рис. 1.12. показано, как типичная MIS преобразовывает операционные данные приказов, производства и бухгалтерии в MIS-файлы, которые используются, чтобы обеспечить менеджеров докладами.

Характеристика управляющих информационных систем

ь MIS поддерживают структурированные и слабоструктурированные решения на эксплуатационном и управленческом уровне. Они также полезны для планирования штата главных менеджеров.

ь MIS ориентированы для отчетов и контроля. Они разработаны, чтобы помогать обеспечивать текущий учет действий.

ь MIS полагаются на существующие общие данные и потоки данных.

ь MIS имеют немного аналитических возможностей.

ь MIS помогают в принятии решений, используя прошлые и настоящие данные.

ь MIS относительно негибки.

ь MIS имеют скорее внутреннюю, чем внешнюю ориентацию.

ь Информационные требования известны и устойчивы.

ь MIS часто требуют длинного анализа и проектирования процесса.

Рис. 1.12. Обработка информации в MIS.

MIS обычно обслуживают менеджеров, заинтересованных в еженедельных, ежемесячных и ежегодных результатах. Эти системы вообще негибки и имеют немного аналитических возможностей. Большинство MIS используют простую установившуюся практику типа резюме и сравнения в противоположность сложным математическим моделям или статистическим методам. Системы поддержки принятия решений (DSS)

В 70-е годы ряд компаний начал развивать информационные системы, которые совершенно отличались от традиционных MIS-систем. Эти новые системы были меньшими, интерактивными и были разработаны с целью помочь конечным пользователям использовать данные и модели, чтобы решать слабоструктурированные и неструктурированные проблемы. В 80-е годы эти системы были использованы для групп и целых организаций.

Мы уже касались систем поддержки принятия решений в главе 1, но, учитывая их особую важность для менеджеров, рассмотрим еще раз более подробно.

Что такое системы поддержки принятия решений?

Эти системы названы системами поддержки принятия решений (DSS). Как мы отмечали ранее, системы поддержки принятия решений (DSS) помогают принятию решений управления, объединяя данные, сложные аналитические модели и удобное для пользователя программное обеспечение в единую мощную систему, которая может поддерживать слабоструктурированное или неструктурированное принятие решений. DSS находятся под управлением пользователя от начала до реализации и используются ежедневно.

Основная концепция DSS — дать пользователям инструментальные средства, необходимые для анализа важных блоков данных, используя легкоуправляемые сложные модели гибким способом. DSS разработаны, чтобы предоставить возможности, а не просто, чтобы ответить на информационные потребности.

DSS специализированы по специфическим решениям или классам решений типа маршрутизации, формирования очередей, оценки и т д.

Таблица 1.5. показывает различия между DSS и MIS В основной концепции DSS обещают конечному пользователю управление данными и инструментальными средствами. MIS до сих пор в значительной степени во власти профессионалов: пользователи получают информацию из профессионального штата аналитиков, проектировщиков и программистов. MIS ориентируются на структурные информационные потоки средних менеджеров. DSS ориентированы на главных управляющих и средних менеджеров, на изменения, гибкость и быструю реакцию. В DSS имеется меньшее количество возможностей, чтобы связать пользователей со структурными информационными потоками, и соответственно больший акцент делается на моделях, предположениях и показе графики. Как DSS, так и MIS полагаются на профессиональный анализ и проектирование. Однако в то время, как MIS обычно следуют за традиционной методологией развития систем, ставя информационные требования перед проектированием и работой, системы DSS сознательно итерационные, никогда не заморожены и в этом смысле никогда не закончены.

Табл. 1.5. Различия между DSS и MIS

Сфера применения

Философия

Обеспечивают объединенные инструментальные средства, данные, модели и язык пользователям

Обеспечивают структурную информацию конечным пользователям

Системный анализ

Используют инструментальные средства в процессе решения

Выделяют информационные требования

Проект

Итеративный процесс

Поставляют систему, основанную на утвержденных требованиях

Характеристика систем поддержки принятия решений:

• DSS предлагают гибкость пользователей, адаптируемость и быструю реакцию.

• DSS допускают, чтобы пользователи управляли входом и выходом

• DSS оперируют с небольшой помощью профессиональных программистов или без нее.

• DSS обеспечивают поддержку для решений и проблем, которые не могут быть определены заранее.

• DSS используют сложный анализ и инструментальные средства моделирования.

Ясно, что в соответствии с замыслом DSS имеют большую аналитическую мощность, чем другие системы: они построены с рядом моделей, чтобы анализировать данные. DSS разработаны так, чтобы пользователи могли работать с ними непосредственно; эти системы явно включают удобное для пользователя программное обеспечение. Системы DSS интерактивны; пользователь может изменять предположения и включать новые данные.

Пример интересной DSS — система, оценивающая рейсы филиала большой американской металлургической компании, которая перевозит сыпучие грузы — каменный уголь, руду и готовые продукты для материнской компании. Фирма владеет несколькими судами, фрахтует другие, чтобы доставлять общий груз. Оценивающая рейс система вычисляет финансовые и технические детали рейса.

Финансовые вычисления включают затраты корабля (топливо, рабочая сила, капитал), фрахтовые ставки для различных типов груза и издержки порта. Технические детали включают несметное число факторов типа грузоподъемности корабля, скорости, расстояний от порта, топлива, водопотребления и моделей погрузки.

Система может отвечать на вопросы такого типа: при наличии графика поставки клиента и предлагаемой фрахтовой ставки какой корабль должен быть выбран для максимизации прибыли? Какова оптимальная скорость, в которой данный корабль может оптимизировать прибыль и все еще выполнять график поставки? Какова оптимальная модель погрузки для корабля, направляющегося на запад США, если он двигается из Малайзии? Система установлена на мощном настольном микрокомпьютере, имеет систему меню, которая делает работу простой для пользователей, позволяя легко войти в данные или получать информацию.

Системы поддержки принятия решений помогают находить ответы не только на прямой вопрос «что, если?», но и на подобные. Приведем типичные вопросы по системам поддержки принятия решений (DSS).

1. Анализ примеров (case analysis)-оценка значений выходных величин для заданного набора значений входных переменных.

2. Параметрический («что, если?») анализ-оценка поведения выходных величин при изменении значений входных переменных.

3. «Анализ чувствительности — исследование поведения результирующих переменных в зависимости от изменения значений одной или нескольких входных переменных.

4. Анализ возможностей — нахождение значений входной переменной, которые обеспечивают желаемый конечный результат (известен также под названием «поиск целевых решений», «анализ значений целей», «управление по целям»).

5. Анализ влияния — выявление для выбранной результирующей переменной всех входных переменных, влияющих на ее значение, и оценка величины изменения результирующей переменной при заданном изменении входной переменной, скажем, на 1%.

6. Анализ данных — прямой ввод в модель ранее имевшихся данных и манипулирование ими при прогнозировании.

7. Сравнение и агрегирование — сравнение результатов двух или более прогнозов, сделанных при различных входных предположениях, или сравнение предсказанных результатов с действительными, или объединение результатов, полученных при различных прогнозах или для разных моделей.

8. Командные последовательности (sequences) — возможность записывать, исполнять, сохранять для последующего использования регулярно выполняемые серии команд и сообщений.

9. Анализ риска — оценка изменения выходных переменных при случайных изменениях входных величин.

10. Оптимизация — поиск значений управляемых входных переменных, обеспечивающих наилучшее значение одной или нескольких результирующих переменных.

Исполнительные системы (ESS)

Старшие менеджеры используют класс информационных систем, названных исполнительными системами поддержки принятия решений (ESS). ESS обслуживают стратегический уровень организации. Они ориентированы на неструктурные решения и проводят системный анализ окружающей среды лучше, чем любые прикладные и специфические системы. ESS разработаны, чтобы включить данные относительно внешних результатов типа новых налоговых законов или конкурентов, но они также выбирают суммарные данные из внутренних MIS и DSS. Они фильтруют, сжимают и выявляют критические данные, сокращая время и усилия, требуемые, чтобы получить информацию, полезную для руководителей. ESS используют наиболее продвинутое графическое программное обеспечение и могут поставлять графики и данные из многих источников немедленно в офис старшего менеджера или в зал заседаний.

В отличие от других типов информационных систем ESS не предназначены для решения определенных проблем. Вместо этого ESS обеспечивают обобщенные вычисления и передачу данных, которые могут применяться к изменяющемуся набору проблем. ESS имеют тенденцию использовать меньшее количество аналитических моделей, чем DSS.

ESS помогают найти ответы на следующие вопросы:

• В каком бизнесе мы должны быть?

• Что делают конкуренты?

• Какие новые приобретения защитили бы нас от циклических деловых колебаний?

• Какие подразделения мы должны продать, чтобы увеличить наличность?

Связь систем друг с другом: интеграция

Рис. 1.13. поясняет, как различные типы системы в организациях связаны друг с другом. TPS — обычно главный источник данных для других систем, в то время как ESS прежде всего получатель данных из систем низшего уровня. Другие типы систем могут также обмениваться данными друг с другом. Но сколько их может быть или как эти системы должны быть объединены? Это очень трудный вопрос. Лучше всего иметь некоторый уровень интеграции, чтобы информация могла легко перемещаться среди различных частей организации. Но интеграция стоит денег, и объединение многих различных систем чрезвычайно трудоемко. Каждая организация должна взвесить потребности в интегрирующих системах против трудностей установки крупномасштабной интегрированной системы. Не существует никакого одного правильного уровня интеграции, или централизации.

Рис. 1.13. Взаимосвязи среди информационных систем.

На Рис. 1.13. связи между DSS и существующим TPS организации, KWS и MIS являются преднамеренно неопределенными. В некоторых случаях DSS тесно связаны с существующими общими информационными потоками. Однако часто DSS изолированы от главных организационных информационных систем. DSS имеют тенденцию быть автономными системами, разработанными для конечных пользователей — отделов или групп не под центральным управлением, хотя, очевидно, лучше, если они объединены в организационные системы, когда это функционально требуется.

Что такое информационные системы и зачем они нужны — классификация и использование

19 февраля 2020

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

По традиции продолжаем выяснять значение сложных технических терминов.

В этой статье я постараюсь простыми словами рассказать, что такое информационная система (ИС) и для чего она нужна.

Информационная система — это…

Понятие ИС связано с компьютерными технологиями и поэтому для большинства людей ассоциируется с чем-то непостижимым. Но на деле все не так сложно, как кажется.

Согласно Википедии, информационная система (ИС) — это система сбора, хранения и передачи информации. Если сказать простыми словами, это взаимодействие людей и компьютеров для обработки и интерпретации (это как?) неких данных.

Термин также используется для определения программного обеспечения (это что?), которое используется для баз данных (это что?).

Но чаще всего под этим определением подразумевают все, что включает в себя поверхностный слой — пользователей, процессы, коммуникационные сети, входы и выходы.

Основное предназначение любой информационной системы состоит в поддержке операций, управлении и принятии решений.

Как информационные системы применяются в жизни людей

Сами того не подозревая, вы ежедневно сталкиваетесь с использованием информационных систем. Причем взаимодействуете с ними почти в любом месте: дома, на улице, в транспорте или на работе.

Ярким примером использования ИС в повседневной жизни можно назвать телефонный справочник, где указаны номера телефонов абонентов, а рядом — их ФИО.

Информационные системы управления используются и на предприятиях (это где?). Причем они облегчают работу персоналу, так как человеку сложно держать необходимый для работы объем данных в голове, а информационные системы с легкостью оперируют таким количеством.

Кроме этого, информация (это что?) должна быть структурирована и адаптирована для удобства использования. С помощью ИС можно найти практически любую рабочую информацию за секунды.

Основные типы информационных систем

Существует несколько различных типов ИС. В качестве примера приведем следующие:

  1. автоматизированная обработка транзакций;
  2. система управления базами данных (СУБД);
  3. поддержка сделанных решений;
  4. управление полученными знаниями.

Для реализации большинства систем используются информационные технологии (это что?), так как человеческий мозг не может выполнять такого множества операций без их помощи. Мы не способны оперировать и обрабатывать большие объемы данных либо одновременно управлять несколькими процессами.

Информационные технологии — важный и податливый ресурс. Многие работодатели нанимают на работу специального человека, который отвечает за их бесперебойную работу. Также в этой роли часто выступает технический директор.

Компоненты для создания ИС

Чтобы обеспечить максимальную функциональность и безопасность информационной системы, во время ее создания стоит убедиться в наличии 6 компонентов.

В их числе:

  1. оборудование;
  2. программное обеспечение;
  3. данные — факты для получения полезной информации;
  4. требования и правила, которые регулируют работу ИС;
  5. люди — не только пользователи, но и те, кто обслуживает информационные системы и технологии, поддерживает данные сети;
  6. обратная связь.

При этом нужно позаботиться о защите безопасности, предотвратив возможность появления вирусов в системе и несанкционированного доступа со стороны третьих лиц.

Виды и особенности информационных систем

Существует несколько видов классификаций информационных систем.

По масштабности они подразделяются на следующие категории:

  1. Индивидуальные. Такие системы создаются только для одного человека. Они содержат вводимые самим пользователем персональные данные. В качестве примера приведем блокнот или записную книгу.
  2. Коллективная. Эта система предназначена для небольшой группы людей. Вся информация, которую она содержит, может быть использована только ими.
  3. Корпоративная. В этом случае имеем дело с ИС, рассчитанной как на мелкие, так и на крупные предприятия.

Преимущества ИС

Информационные системы имеют несколько весомых преимуществ. Вот основные из них:

  1. экономия времени из-за отсутствия необходимости копаться в сотнях справочников в надежде найти желаемую информацию;
  2. легкость использования, так как больше не нужно выделять много места для хранения многостраничных справочников и запоминать все данные, которые могут пригодиться в работе или повседневной жизни;
  3. возможность создания собственного классификатора, направленного на удовлетворение именно ваших потребностей в поиске нужных документов.

Примеры информационных систем из жизни

Если вам до сих пор неясно, что представляет собой информационная система, для чего она необходима, какие виды и типы бывают, предлагаю рассмотреть их примеры из жизни.

Возьмем самые простые варианты:

  1. . Такой информационной системой пользуются почти все компании, которые продают товары в интернете. Суть заключается в массовой рассылке писем с определенным содержанием конкретным адресатам.
  2. Справочная информационная система регистратуры. С ее помощью можно записаться на определенное время на прием к выбранному специалисту. При этом сотрудники всегда владеют доступом к информации о том, кто и в какое время должен прийти.
  3. Метеорологическая система. Все мы смотрим прогноз погоды по телевизору. Так вот для ее предсказания все чаще используются специально разработанные информационные системы. Они собирают данные с различных приборов, затем их обрабатывают и генерируют примерную информацию о погоде в определенном регионе.

Вот и все, дорогие друзья. Я постарался простыми словами объяснить такое сложное понятие, как информационные системы. Надеюсь, что у меня это получилось, и после прочтения статьи у вас не останется вопросов. При необходимости в комментариях спрашивайте у меня или у других читателей блога KtoNaNovenkogo.ru все, что осталось непонятным во время чтения статьи, и мы постараемся дать развернутый ответ.

А для закрепления полученных знаний предлагаю просмотреть видео по теме:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

* Нажимая на кнопку «Подписаться» Вы соглашаетесь с политикой конфиденциальности.

Подборки по теме

  • Вопросы и ответы
  • Использую для заработка
  • Полезные онлайн-сервисы
  • Описание полезных программ

Использую для заработка

Виды информационных систем, примеры

В статье поговорим о примерах информационных систем, об их видах. Для начала рассмотрим общие понятия. После — перейдем к непосредственно теме данной статьи.

Понятие

Как же мы будем рассматривать примеры информационных систем, если не знаем, что это такое? Система — это совокупность каких-то элементов, которые могут взаимодействовать друг с другом и образовывать определенное единство. Архитектурой системы называется комплекс свойств, которые важны для пользователя. Элементом системы называется часть, которая имеет определенное функциональное значение. Элементы состоят из еще более простых частей, которые называются подсистемами. Структурой системы называется определенный порядок, состав и принципы взаимодействия элементов, которые и определяют основные его свойства. Информационная система — это взаимосвязанный комплекс методов, которые используются для обработки, хранения и выдачи информации для достижения определенных целей.

В современном понимании этого термина есть некоторые особенности. Так, информационные системы используются на основе какого-то технического средства переработки информации. Кроме того, надо заметить, что само по себе техническое воплощение не несет никакой сути, если в нём не учитывается важность для человека. Необходимо понимать разницу между компьютерами и информационными системы, так как многие люди не знают её. Компьютеры имеют специальные программные средства, и являются всего лишь технической базой для информационных систем. В то же время, они невозможны без персонала, который обеспечивает взаимодействие с компьютером.

Общая характеристика

Прежде чем приступать к подробному описанию каждого вида систем, поговорим об общей классификации. Еще раз подчеркнем, что систем очень много, и описать все из них в пределах статьи не представляется возможным. По типу данных информационные системы могут быть документальными или фактографическими. Также они делятся по степени автоматизации, где выделяют ручные, автоматические и автоматизированные. По сфере применения бывают интегрированными, организационного управления, управления ТП, САПР. По характеру обработки данных бывают информационно-поисковые, информационно решающие системы. Последние подразделяются на советующие и управляющие. По уровню управления выделяют стратегические, операционные и функциональные системы. Все они предназначены для того, чтобы были удовлетворены определённые потребности в рамках конкретной области. То есть для каждой предметной области существуют свои информационные системы. Основные области – это экономическая, медицинская и географическая. Каждую из них мы рассмотрим ниже подробнее.

Процессы

Прежде чем рассмотреть примеры информационных систем, поговорим о процессах, которые могут в них протекать. Итак, информационный процесс — это такой процесс, во время которого происходит сбор, обработка, накопление, создание, хранение, распространение, поиск, потребление информации. Информационными ресурсами называются отдельные массивы информации или документов, которые хранятся в системах. Главные процессы, которые обеспечивают работу всей системы, можно сократить до следующих:

  • ввод и вывод информации из внешних или внутренних источников;
  • обработка информации;
  • обратная связь.

Экономика

Рассматривая типы информационных систем, надо сказать, что их существует очень много, и даже в пределах этой статьи мы не сможем рассмотреть абсолютно все. Пока что остановимся на примере экономической информационной системы. Она представляет собой систему, предназначенную для поиска, сбора, хранения, обработки и выдачи какой-то информации о деятельности определенного экономического объекта. Также она представляет собой совокупность различных внешних и внутренних потоков информации. Важнейшие функции этой системы — это анализ, учет, планирование и прогнозирование экономических процессов. На её основе функционируют такие информационные системы: банковские, страховые, статистические, налоговые, бухгалтерские и фондового рынка. Вот мы и рассмотрели пример экономической информационной системы.

Автоматизированные системы

Они появились в результате использования современных технологий. Представляют собой совокупность экономико-математических методов и моделей, а также технических, технологических, программных и других средств, которые позволяют обрабатывать и собирать информацию. Важнейшим элементом АИС является информационное обеспечение. Это совокупность данных о каком-то объекте, описываемая при помощи языковых средств. Элементы системы — это показатели, описывающие деятельность определенного объекта, классификацию и кодирование, базу данных, документацию. Примеры таких информационных систем привести довольно просто. Это любые базы данных, которые используются на всех предприятиях. Главные требования здесь — это простота доступа к данным, регламентация этого доступа, эффективная схема документооборота, использование современных методов сохранения и поиска данных.

Примеры персональной информационной системы

Далее мы рассмотрим персональные системы, которые еще называются одиночными. Они чаще всего используются на автономных компьютерах. То есть, в таком случае не нужна общая сеть. Эта система часто состоит из нескольких простых приложений, которые имеют общий информационный фонд и рассчитаны на работу исключительно одного пользователя или же их группы, которая разделяет пользователей компьютера по времени. Такие системы создаются при помощи систем управления базами данных.

Групповые корпоративные системы

Немного поговорим о примерах программ информационных систем другого типа. Это групповые и корпоративные системы, которые отличаются тем, что они изначально рассчитаны на коллективное использование информации между членами группы. Чаще всего создаются на основе локальной вычислительной сети. Но, при разработке, естественно, используют серверы баз данных. Также существует много популярных SQL-сервисов, как коммерческих, так и в свободном доступе. Корпоративные информационные системы необходимы для развития рабочих групп. Чаще всего их создают в крупных компаниях, так как они могут поддерживать узлы связи, которые имеют территориальный разрыв. Очень часто они имеют иерархическую структуру, которая состоит из нескольких уровней. Характеризуются многоуровневой архитектурой. При разработке используются уже известные серверы баз данных.

Однако есть еще одно понятие, которое заслуживает нашего внимания. Это сетевые информационные системы. Примеры их привести еще легче, так как любая информационная система, которую мы рассматриваем, уже является сетевой.

Геоинформационные системы

Они заключаются в сборе, хранении, графической визуализации и анализе данных. Часто это понятие используется в более узком смысле, когда подразумевается некий инструмент, который позволяет пользователям искать и редактировать карту местности, например. Состоит она из пространственных баз данных, векторной графики и различных средств пространственного анализа. Всё это применяется очень активно в метеорологии, геологии, землеустройстве, картографии и т. д. Это яркий пример справочной информационной системы, которая хранит в себе информацию, возможную для открытого пользования. Классифицируются они очень часто по проблемной ориентации. Имеется в виду решение научных или же прикладных задач. В качестве примера можно привести инвентаризацию ресурсов, мониторинг, управление, принятия решений и геомаркетинг. Основой информации здесь являются пространственные данные. Современные программы позволяют совмещать это с бизнес-аналитикой, что позволяет принимать быстрые и качественные решения за короткий срок.

Медицинская система

Это система автоматизации документооборота в лечебных учреждениях, которая позволяет принимать взвешенные решения, вести электронные карты пациентов, представлять данные исследования в цифровой форме, обрабатывать данные мониторинга, хранить и анализировать административную и финансовую информацию. Это пример замкнутой информационной системы, так как информация находится в закрытом доступе. Главным отличием является ориентированность на пациента, повышенная ответственность, интеграция с финансовой, медицинской и административной информацией, интеграция с различными видами оборудования. Также есть классификация по направлению деятельности медучреждений. То есть, разрабатываются системы для стационаров, стоматологических клиник, санаториев, амбулаторий и поликлиник. В России существует много таких систем, которые функционируют по всей стране. Но многие люди путают их с электронной историей болезни. Этот проект, кстати, вступил в действие ещё в 2008 году.

Передача информации

Отдельно стоит рассмотреть примеры разомкнутой информационной системы. Сюда относятся практически все системы связи. Их основная задача заключается в переносе информации в пространстве. Это и телефонная связь, радиосвязь, телевидение, телеграфная связь. Такие системы могут быть одноканальными и многоканальными. Это разомкнутая система, так как получение информации здесь контролируется лишь самим лицом. То есть информация свободно пересекает пространство и попадает на устройство.

Фактографические и документированные системы

Здесь надо отметить, что тип системы зависит от того, на каком уровне управления она работает. По характеру представления и организации информации она делится на документальную, геоинформационную и фотографическую. Последние могут накапливать и хранить данные в виде множества экземпляров или структурных элементов. Каждый из этих элементов отражает информацию по определенному объекту или событию. Такие системы удовлетворяют информационные потребности непосредственно, то есть, предоставляя пользователям сами факты или данные. Документальные информационные системы отличаются тем, что в них есть элемент, который не подразделяется на более мелкие. Также здесь обычно нет строгой структуры. Такие системы позволяют устанавливать логическую взаимосвязь между документами, например, по смыслу, содержанию или каким-то другим критериям. Это довольно сложная многоаспектная задача, которую может решить только опытный разработчик. Геоинформационные системы создаются в виде отдельных объектов с конкретным набором реквизитов, которые привязаны к определённой топографической основе. Они используются для информационного обеспечения в тех областях, где необходим пространственно-географический компонент. Это может быть маршрут транспорта, коммунальное хозяйство и т. д. Таким образом, мы определили примеры логистических информационных систем, которые могут функционировать на базе информационных источников.

Подводя итоги, хочется сказать о том, что данная тема очень обширна, и ее трудно рассмотреть в одном учебнике, не то что в статье. Тем не менее мы попытались предоставить максимально понятный и ёмкий материал, который позволит понять основные различия между информационными системами.

Информационные системы. Структура и классификация информационных систем

ИНФОРМАЦИОННЫЕ СИСТЕМЫ. СТРУКТУРА И КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ

Информационная система — это взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации для достижения цели управления. В современных условиях основным техническим средством обработки информации является персональный компьютер. Большинство современных информационных систем преобразуют не информацию, а данные. Поэтому часто их называют системами обработки данных.

По степени механизации процедур преобразования информации системы обработки данных делятся на системы ручной обработки, механизированные, автоматизированные и системы автоматической обработки данных.

Важнейшими принципами построения эффективных информационных систем являются следующие.

Принцип интеграции, заключающийся в том, что обрабатываемые данные, однажды введенные в систему, многократно используются для решения большого числа задач.

Принцип системности, заключающийся в обработке данных в различных аспектах, чтобы получить информацию, необходимую для принятия решений на всех уровнях управления.

Принцип комплексности, заключающийся в механизации и автоматизации процедур преобразования данных на всех этапах функционирования информационной системы.

Информационные системы также классифицируются:

  • по функциональному назначению: производственные, коммерческие, финансовые, маркетинговые и др.;
  • по объектам управления: информационные системы автоматизированного проектирования, управления технологическими процессами, управления предприятием (офисом, фирмой, корпорацией, организацией) и т. п.;
  • по характеру использования результатной информации: информационно-поисковые, предназначенные для сбора, хранения и выдачи информации по запросу пользователя; информационно-советующие, предлагающие пользователю определенные рекомендации для принятия решений (системы поддержки принятия решений); информационно-управляющие, результатная информация которых непосредственно участвует в формировании управляющих воздействий.

Структуру информационных систем составляет совокупность отдельных ее частей, называемых подсистемами.

Функциональные подсистемы реализуют и поддерживают модели, методы и алгоритмы получения управляющей информации. Состав функциональных подсистем весьма разнообразен и зависит от предметной области использования информационной системы, специфики хозяйственной деятельности объекта, управления.

В состав обеспечивающих подсистем обычно входят:

  1. информационное обеспечение — методы и средства построения информационной базы системы, включающее системы классификации и кодирования информации, унифицированные системы документов, схемы информационных потоков, принципы и методы создания баз данных;
  2. техническое обеспечение — комплекс технических средств, задействованных в технологическом процессе преобразования информации в системе. В первую очередь это вычислительные машины, периферийное оборудование, аппаратура и каналы передачи данных;
  3. программное обеспечение включает в себя совокупность программ регулярного применения, необходимых для решения функциональных задач, и программ, позволяющих наиболее эффективно использовать вычислительную технику, обеспечивая пользователям наибольшие удобства в работе;
  4. математическое обеспечение — совокупность математических методов, моделей и алгоритмов обработки информации, используемых в системе;
  5. лингвистическое обеспечение — совокупность языковых средств, используемых в системе с целью повышения качества ее разработки и облегчения общения человека с машиной.

Организационные подсистемы по существу относятся также к обеспечивающим подсистемам, но направлены в первую очередь на обеспечение эффективной работы персонала, и поэтому они могут быть выделены отдельно. К ним относятся:

  1. кадровое обеспечение — состав специалистов, участвующих в создании и работе системы, штатное расписание и функциональные .обязанности;
  2. эргономическое обеспечение — совокупность методов и средств, используемых при разработке и функционировании информационной системы, создающих оптимальные условия для деятельности персонала, для быстрейшего освоения системы;
  3. правовое обеспечение — совокупность правовых норм, регламентирующих создание и функционирование информационной системы, порядок получения, преобразования и использования информации;
  4. организационное обеспечение — комплекс решений, регламентирующих процессы создания и функционирования как системы в целом, так и ее персонала.

Реферат: Понятие и назначение информационной системы

введение

Среди многообразия поисков путей развития рынка, средств производства, новых направлений деятельности коммерческо-посреднических организаций и предприятий вызывают значительный интерес научные исследования и практические новации, объединяемые понятием логистики.

В течение последних лет бурно развиваются основанные на информатике новые логистические технологии. Информационные системы занимают в этих технологиях центральное положение. Предприятие является открытой системой, которая материальным и информационным потоками связана с поставщиками, потребителями, экспедиторами и транспортными организациями. При этом возникают трудности преодоления мест стыка между информационными системами предприятия и других организаций. В местах стыка материальный или информационный поток переходить через границы правомочия и ответственности отдельных подразделений предприятия или через границы самостоятельных организаций. Обеспечение плавного преодолевания мест стыка является одной из важных задач логистики.

Информационная техника может значительно способствовать выполнению требований рынка. Определенного роста эффективности можно достичь и с помощью локальных и вычислительных систем, а также в результате применения интегрированных информационных и управленческих систем, которые «перешагивают» границы между подразделениями предприятий.

Целью реферата является изучение понятия информационная система и ее связь с основными элементами логических структур. Отсюда вытекают следующие задачи: рассмотрение понятия ИС, основные задачи решаемые ИС, процессы в ИС, место информационных систем в профессиональной деятельности, логистические информационные системы.

Понятие и назначение информационной системы.

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокуп­ность разнородных, взаимосвязанных и взаимодействующих между собой элементов. Системы значительно отличаются между собой как по соста­ву, так и по главным целям.

Элемент системы — часть системы, имеющая определенное функциональное назначение. Сложные элементы систем, в свою очередь состоящие из более простых взаимосвязанных элементов, часто называют подсистемами.

2. Организация системы — внутренняя упорядоченность, согласованность вза­имодействия элементов системы, проявляющаяся, в частности, в ограничении разнообразия состояний элементов в рамках системы.

3. Структура системы — состав, порядок и принципы взаимодействия элементов системы, определяющие основные свойства системы. Если отдельные элементы системы разнесены по разным уровням и внутренние связи между элементами организованы только от вышестоящих к нижестоящим уровням и наоборот, то говорят об иерархической структуре системы. Чисто иерархические структуры встречаются практически редко, поэтому, несколько рас­ ширяя это понятие, под иерархической структурой обычно понимают и такие структуры, где среди прочих связей иерархические связи имеют главенствующее значение.

4. Архитектура системы — совокупность свойств системы, существенных для пользователя.

5. Целостность системы — принципиальная несводимость свойств системы к сумме свойств отдельных ее элементов (эмерджентность свойств) и, в то же время, зависимость свойств каждого элемента от его места и функции внутри системы.

ИС – взаимосвязанная совокупность средств, методов и персонала, используемых для хранения и, обработки и выдачи инф. в интересах достижения поставленной цели.

Информационная система — организационно упорядочен­ная совокупность документов (массивов документов) и ин­формационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих ин­формационные процессы

История развития информационных систем. Основные процессы информациооных систем.

Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов. Такие системы называются системами обработки транзакций. К транзакциям относят следующие операции: выписка счетов, накладных, составление платежных ведомостей и другие операции бухгалтерского учета.

В 60-е гг. средства вычислительной техники получили дальнейшее развитие: появляются операционные системы, дисковая технология, значительно улучшаются языки программирования. Появляются системы управленческих отчетов (СУО), ориентированные на менеджеров, принимающих решения.

В 70-е гг. информационные системы продолжают активно развиваться. В это время появляются первые микропроцессоры, интерактивные дисплейные устройства, технология баз данных и дружественное по отношению к пользователю программное обеспечение (средства, позволяющие работать с программой, не изучая ее описания). Эти достижения создали условия для появления систем поддержки принятия решений (СППР). В отличие от систем управленческих отчетов, которые предоставляют информацию по заранее установленным формам отчетности, СППР предоставляют ее по мере возникновения необходимости.

Существуют 3 стадии принятия решения: информационная, проектная и стадия выбора. На информационной стадии исследуется среда, определяются события и условия, требующие принятия решений. На проектной стадии разрабатываются и оцениваются возможные направления деятельности (альтернативы). На стадии выбора обосновывают и отбирают определенную альтернативу, организуя слежение за ее реализацией. Важнейшей целью СППР является обеспечение технологией формирования информации, а также технологическая поддержка принятия решения в целом.

В 70-80-х гг. в офисах начали применять разнообразные компьютерные и телекоммуникационные технологии, которые расширили область применения информационных систем. К таким технологиям относятся: текстовая обработка, настольное издательство, электронная почта и др. Интеграцию этих технологий в одном офисе называют офисной информационной системой. ИС начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

1980-е гг. характеризуются еще и тем, что информационные технологии начали претендовать на новую роль в организации: компании открыли для себя, что информационные системы являются стратегическим оружием. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

Процессы в информационной системе

Процессы, обеспечивающие работу информационной системы любого назначения, условно можно представить в виде схемы, состоящей из блоков:

• ввод информации из внешних или внутренних источников;

• обработка входной информации и представление ее в удобном виде;

• вывод информации для представления потребителям или передачи в другую систему;

• обратная связь — это информация, переработанная людьми данной организации для коррекции входной информации.

Основные задачи, решаемые инф системой. Примеры инф систем.

· Интерпретация данных . Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

· Диагностика . Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии.

· Мониторинг . Основная задача мониторинга — непрерывная интерпретация данных в реальном времени и сигнализация о выходе тех или иных параметров за допустимые пределы.

· Проектирование . Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов — чертёж, пояснительная записка и т.д. Основные проблемы здесь — получение чёткого структурного описания знаний об объекте и проблема «следа».

· Прогнозирование . Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций.

· Планирование . Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

· Обучение . Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения.

· Управление . Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.

· Поддержка принятия решений . Поддержка принятия решения — это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения. Эти ЭС помогают специалистам выбрать и/или сформировать нужную альтернативу среди множества выборов при принятии ответственных решений.

· Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или под-проблем. Задачами анализа являются: интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относятся проектирование, планирование, управление. Комбинированные: обучение, мониторинг, прогнозирование.

Система Элементы системы Главная цель системы
Предприятия Люди, оборудование, материалы, здания и др. Производство то­варов

Компьютер

Электронные и электромеханические

Обработка данных

Телекоммуникационная система

Элементы, линии связи и др. Компьютеры, модемы, кабели, сетевое программное обеспечение и др.

Передача инфор­мации

Информацион­ная система Компьютеры, компьютерные сети, люди, информационное и программное обеспечение Производство про­фессиональной информации

Основные этапы развития инф систем.

Период времени Концепция использования информации Вид информационных систем Цель использования

1950-1960 гг.

Бумажный поток расчетных документов

Информационные системы обработки расчетных доку­ментов на электромехани­ческих бухгалтерских маши­нах

Повышение скорости обра­ботки документов Упрощение процедуры об­работки счетов и расчета зарплаты

1960-1970 гг.

Основная помощь в подго­товке отчетов Управленческие информа­ционные системы для про­изводственной информации Ускорение процесса подго­товки отчетности

1970-1980 гг.

Управленческий контроль реализации (продаж)

Системы поддержки принятия решений Системы для высшего звена управления

Выработка наиболее рацио­нального решения

1980 — 2009 гг.

Информация — стратегичес­кий ресурс, обеспечиваю­щий конкурентное преиму­щество

Стратегические информаци­онные системы Автоматизированные офисы

Выживание и процветание фирмы

1 этап. Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов.

2 этап. 60-е гг. знаменуются изменением отношения к информационным системам. Информация, полученная из них, стала применяться для периодической отчетности по многим параметрам. Для этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату, как было ранее.

3 этап. В 70-х — начале 80-х гг. информационные системы начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

4 этап. К концу 80-х гг. концепция использования информационных систем вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях организации любого профиля. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

Место информационных систем в профессиональной деятельности.

Среди персонала, имеющего отношение к информационным системам, выделяют такие категории, как конечные пользователи, программисты, системные аналитики, администраторы баз данных и др.

Программистом традиционно называют человека, который составляет программы. Человека, использующего результат работы компьютерной программы, называют конечным пользователем. Системный аналитик — это человек, оценивающий потребности пользователей в применении компьютера, а также проектирующий информационные системы, которые соответствуют этим потребностям.

В сфере экономического менеджмента с информационными системами работают две категории специалистов: управляющие конечные пользователи и специалисты по обработке данных. Конечный пользователь — это тот, кто использует информационную систему или информацию, которую она выпускает. Специалисты по обработке данных профессионально анализируют, проектируют и разрабатывают систему.

Структура информационных систем. Понятие подсистема и.с.

1. По уровням иерархии (суперсистема, система, подсистема, элемент системы);

2. По степени замкнутости (замкнутые, открытые, условно-замкнутые);

3. По характеру протекаемых процессов в динамических системах (детерминированные, стохастические и вероятностные);

По типу связей и элементов (простые, сложные).

Подсистема — это набор объектов и подсистем, обеспечивающих некоторую функциональность, и взаимодействующих между собой в соответствии с их интерфейсами. Интерфейс подсистемы представляет собой подмножество объединения интерфейсов всех объектов и подсистем, составляющих эту подсистему. В состав подсистемы может входить один, или более взаимозависимых объектов и/или подсистем.

Структура инфо. систем. назначение и характеристика подсистем.

4. По уровням иерархии (суперсистема, система, подсистема, элемент системы);

5. По степени замкнутости (замкнутые, открытые, условно-замкнутые);

6. По характеру протекаемых процессов в динамических системах (детерминированные, стохастические и вероятностные);

По типу связей и элементов (простые, сложные).

Логистические информационные системы

Логистические информационные системы представляют собой соответствующие информационные сети, начинающиеся с дневных требований заказчиков (представляющих чисто стохастическую величину), распространяющиеся через распределение и производство до поставщиков. Эти системы обычно разделяются на три группы.

1. Информационные системы для принятия долгосрочных решений о структурах и стратегиях (так называемые плановые системы). Они служат главным образом для создания и оптимизации звеньев логистической цепочки. Для плановых систем характерна пакетная обработка задач.

2. Информационные системы для принятия решений на среднесрочную и краткосрочную перспективу (так называемые диспозитивные или диспетчерские системы). Они направлены на обеспечение отлаженной работы логистических систем. Речь идет, например, о распоряжении (диспозиции) внутризаводским транспортом, запасами готовой продукции, обеспечении материалами и подрядными поставками, запуске заказов в производство. Некоторые задачи могут быть обработаны в пакетном режиме, другие требуют интерактивной обработки (on-line) из-за необходимости использовать как можно более актуальные данные. Дипозитивная система подготавливает все исходные данные для принятия решений и фиксирует актуальное состояние системы в базе данных.

3. Информационные системы для исполнения повседневных дел (так называемые исполнительные системы). Они используются главным образом на административном и оперативном уровнях управления, но иногда содержат также некоторые элементы краткосрочной диспозиции. Особенно важны для этих систем скорость обработки и фиксирование физического состояния без запаздывания (т.е. актуальность всех данных), поэтому они в большинстве случаев работают в режиме on-line. Речь идет, например, об управлении складами и учете запасов, подготовке отправки, оперативном управлении производством, управлении автоматизированным оборудованием. Управление процессами и оборудованием требует интеграции информационных систем коммерческого характера и систем управления автоматикой.

Создание информационных систем требует системного мышления. Структура логистической системы предприятия, материальный поток, обеспечивающие логистические, информационные системы взаимосвязаны и взаимозависимы. Чтобы логистические информационные системы могли обеспечить требуемую эффективность логистических процессов, их надо интегрировать вертикально и горизонтально.

Вертикальная интеграция – связь плановых, диспозитивных и исполнительных систем. Под горизонтальной интеграцией понимается связь отдельных комплексов задач в диспозитивных и исполнительных системах. Главную роль во всей архитектуре логистических систем играют диспозитивные системы, которые определяют требования к соответствующих исполнительным системам.

Вычислительная техника также применяется в отдельных звеньях логистической цепочки для управления сложными техническими процессами и для контроля за ними. В области экономического контроля, наоборот, роль регулятора (прерогативу принятия решений) оставляет за собой человек, а вычислительная техника предоставляет ему нужную информацию. Для управления оперативными логистическими процессами и для контроля за ними важным является диалог с ЭВМ в режиме on-line, который позволяет минимизировать время реакции регулятора. Для экономического контроля часто достаточно периодической пакетной обработки данных.

Благодаря миниатюризации и удешевлению вычислительной техники становится возможной ее децентрализации, т.е. приближение к рабочим местам. Децентрализация ЭВМ позволяет существенно сократить объем передачи данных. Ряд данных о логистических процесса можно обрабатывать автономно прямо в данном подразделении, например, на складе. Принципиальной идеей создания децентрализованных баз данных является возможность принимать решения на месте при информационной связанности всех децентрализованных подразделений.

Взаимная связь средств вычислительной техники на территории предприятия или между несколькими близко расположенными частями предприятия (например, в одном городе) реализуется, как правило, стационарной линией, предназначенной только для этой цели. У передвижных средств и у бортовых вычислительных машин некоторая часть трассы линии связи бывает беспроволочной. ЭВМ и абонентские пункты соединяются в так называемые локальные сети (LAN – Lokal Area Networks).

Отдаленные предприятия соединяются при помощи глобальной коммуникационной сети (WAN — Wide Area Network), которая обычно использует сеть общего назначения, эксплуатируемую почтой.

Ограничивающим фактором для применения ЭВМ в последние годы становится сложность создания программного обеспечения. Поэтому обычно стремятся, с одной стороны, рационализировать и повысить производительность труда программистов, с другой стороны, создавать пакеты прикладных программ широкого применения, пригодных для разных (особенно персональных) ЭВМ и относительно легко адаптируемых к конкретным условиям пользователя.

По оценкам специалистов, на логистические информационные системы приходится 10-20% всех логистических издержек. Цены аппаратного оборудования в мире быстро понижаются; растет отношение производительности ЭВМ к их цене. Несколько лет назад отношение стоимости аппаратного оборудования к программному обеспечению составляло около 1:3; вес программного обеспечения в этом соотношении неустанно растет как из-за увеличения масштаба и сложности информационных систем, так и из-за удешевления аппаратного оборудования.

Для построения логистических информационных систем на базе ЭВМ важны следующие принципы:

— нужно стремиться к модулярной структуре систем как в аппаратном оборудовании, так и в программном обеспечении;

— надо обеспечить возможность поэтапного создания системы;

— очень важным является четкое установление мест стыка;

— нужно обеспечить гибкость системы с точки зрения специфических требований конкретного применения;

— ведущую роль играет приемлемость системы для пользователя диалога «человек-машина».

При проектировании информационных систем возникает опасность сохранения традиционных процессов, в то время как необходимо добиться коренных изменений в организации. Надо иметь в виду, что вычислительные системы не являются универсальным лекарством от плохо управляемых операций. Кроме того, при неконтролируемом использовании новых информационных технологий легко возникает разлив излишней информации и в результате возрастает стоимость обработки данных без заметного эффекта для предприятия. Недостаточная эффективность информационных систем может иметь и другие причины: например, организационные барьеры между подразделениями предприятия, низкое качество (по критериям «верность» и «актуальность») данных, неподготовленность подразделений предприятия к внедрению системы.

Заключение

Сегодня информационные технологии оказывают влияние не только на обработку данных, но и на способ выполнения работы людьми, на продукцию, характер конкуренции. Информация во многих организациях становится ключевым ресурсом, а информационная обработка – делом стратегической важности.

Большинство организаций не сможет успешно конкурировать, пока не предложит своим клиентам такой уровень обслуживания, который возможен лишь при помощи систем, основанных на высоких технологиях.

Информационная система управления – это система, обеспечивающая уполномоченный персонал данными или информацией, имеющими отношение к организации. Информационная система управления, в общем случае, состоит из четырех подсистем: системы обработки транзакций, системы управленческих отчетов, офисной информационной системы и системы поддержки принятия решений, включая информационную систему руководителя, экспертную систему и искусственный интеллект.

Информационные системы используются организациями в разных целях. Они повышают производительность труда, помогая выполнять работу лучше, быстрее и дешевле, функциональную эффективность, помогая принимать наилучшие решения. Информационные системы повышают качество услуг, предоставляемых заказчикам и клиентам, помогают создавать и улучшать продукцию. Они позволяют закрепить клиентов и отдалить конкурентов, сменить основу конкуренции путем изменения таких составляющих, как цена, расходы, качество.

Список литературы:

1) Федеральный закон Российской Федерации от 27 июля 2006 г. N 149-ФЗ «Об информации, информационных технологиях и о защите информации»//СЗ РФ. — 2007.

2)Цветкова М.С. Модели непрерывного информационного образования // БИНОМ. ЛЗ, 326 стр., 2009 г.

3) Гвоздева Т. В., Баллод Б. А. Проектирование информационных систем // Феникс, 508 стр., 2009 г.

4) Гвоздева В. А., Лаврентьева И. Ю. Основы построения автоматизированных информационных систем.// Феникс, 317 стр., 2008 г.